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Abstract 

The computational methods for calculating the properties of glazing 
systems containing shading from the properties of their components have 
been developed, but the measurement standards and property data bases 
necessary to apply them have not.  It is shown that with a drastic 
simplifying assumption these methods can be used to calculate system 
solar-optical properties and solar heat gain coefficients for arbitrary 
glazing systems, while requiring limited data about the shading.  Detailed 
formulas are presented, and performance multipliers are defined for the 
approximate treatment of simple glazings with shading.  As higher 
accuracy is demanded, the formulas become very complicated. 

INTRODUCTION 

Several years ago ASHRAE sponsored a research project, 548-RP, to develop a method 
of determining the solar heat gain coefficient for complex fenestration systems, i.e., those 
containing non-specular (and presumably geometrically complex) sun-control or 
visibility elements, such as shades, venetian blinds, or translucent glazings.  These 
systems had been characterized using the shading coefficient, a concept developed when 
only clear single glazing was common.  The basic idea behind the shading coefficient 
was that for most systems the chief dependence of the solar transmission on wavelength 
and incident angle came from the glass layer, and the reflectance and absorptance of this 
layer were not large.  It was therefore possible to treat shading systems as providing a 
modifying factor to the single glass transmittance, and this factor being assumed 
independent of incident angle, it could be determined by a single measurement in a 
calorimeter. 
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As multiple glazings and coated glasses were introduced, the basic assumption of the 
shading coefficient ceased to be valid, and it was gradually replaced with the solar heat 
gain coefficient (SHGC), which is a quantity with an explicit dependence on incident 
angle.  For “simple” glazing systems (those consisting only of layers of unshaded glass), 
the SHGC can be calculated from a simple formula, 

 
  
SHGC(θ) = T(θ) + Nk ⋅ Ak (θ)

k = 1

L

∑ , (1) 

where T represents the overall solar-optical transmittance of the system (at the incident 
angle ) and θ   Ak  represents the solar-optical absorptance for each of the glazing layers 
(assumed to be L in number).  The layer inward-flowing fractions, Nk , represent the 
fraction of the energy absorbed in each layer that reaches the interior space.  The system 
transmittance and layer absorptances can be calculated from optical measurements made 
on the individual glass layers.  These are generally made with a spectrophotometer.  
Systematic collections of such properties have been compiled. (Windows and 
Daylighting Group, 2001)  The layer inward-flowing fractions can be calculated from 
heat transfer theory, utilizing measured thermal transmittance coefficients for the gas 
spaces between the glazings.  Standardized computer codes exist to derive the solar heat 
gain coefficient from the spectrophotometric data. (Windows and Daylighting Group 
1994; Wright 1995; Wright 1998) 

Equation 1 and the associated calculation methodologies represent a very significant 
simplification of the problem of characterizing glazing systems.  This can be seen from 
the following argument.  If the number of glazing products from which glazing systems 
may be composed is G, then the number of possible double glazed systems is G2, the 
number of possible 3-layer systems is G3, etc.  If one needs to characterize each glazing 
system by measurement, there is a much larger number of characterizations to be made 
than if one needs only to characterize the individual glazing layers.  This is known as the 
“combinatorial problem”.  And the number G is not small.  At present there are more 
than 900 products listed in the WINDOW-4.1 Spectral Data Library.  While the 
differences between many of these products are small, even the type of generic 
characterization that ASHRAE favors could scarcely be expected to use a number for G 
smaller than 20.  So even though wavelength-by-wavelength measurements are needed to 
calculate the T and A in equation 1, there is still a great savings in labor from not needing 
to measure all possible combinations. 

If one now considers the problem of characterizing glazing systems with shading layers, 
and if the number of possible shading products is S, then just the fact that double glazing 
systems are common means that one must consider three-layer systems, and the number 
of possible systems becomes 3G2S  (assuming only one shading layer, which can be in 
any of three locations).  But any type of shading product is likely to come in a very large 
number of colors and patterns.  The author is aware of a venetian blind manufacturer that 
offers nearly one hundred color options for a single line of venetian blinds.  Even 
assuming the (unrealistically) modest values of G=20, S=10 yields over 12,000 possible 
combinations.  One sees how far we have departed from the era when the shading 
coefficient was developed, in which G was one, the number of possible shaded systems 
was 2S (interior and exterior shading), and S itself was fairly small. 
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Equation 1 cannot be used for glazing systems that contain a shading element because the 
reflectance and transmittance of such an element is not specular: incoming radiation from 
a particular direction produces transmitted or reflected radiation in many directions.  This 
means that the only method of determining the solar heat gain coefficient for a glazing 
with shading was the procedure originally used to determine shading coefficient, 
measurement of the entire system in a calorimeter.  But now measurements would need 
to be made for a number of different incident directions on each system. The difficulty 
and expense of doing these measurements, coupled with the combinatorial problem 
described above made it highly desirable to find a method of characterizing glazings with 
shading elements that was more consonant with Equation 1. (These systems were termed 
“complex glazing systems”, because the shading elements add optical and geometric 
complexity.)  This was the task of 548-RP. 

The research project began by defining an analog of Equation 1 applicable to complex 
glazing systems: 

 
  
SHGC(θ, φ) = T(θ, φ) + Nk ⋅ Ak (θ, φ)

k = 1

L

∑  (2) 

where now φ, the azimuthal angle of the incident direction enters the expressions for the 
solar-optical quantities, since complex glazing systems are not necessarily symmetric 
about the normal to the glazing plane (e.g., glazings with venetian blinds).  Here L is now 
the total number of layers, including shading layers.  That such an expression exists 
follows from basic physical principles, energy conservation and superposition; the 
problem lay in finding a way to determine T, Ak and Nk.  The research project was able to 
do this, and in its several publications (Klems 1994A; Klems 1994B; Klems and Warner 
1995; Klems, Warner et al. 1995; Klems and Kelley 1996; Klems, Warner et al. 1996) it 
set forth these methods and also verified the resulting expression for Equation 2 by 
calorimetric measurements on a double-glazed system with a venetian blind. 

Many shading layers have an inhomogeneous construction that repeats in one or two 
directions; for example, drapes, woven shades, sun screens, and venetian blinds.  The 
scale of this inhomogeneity varies.  In a woven shade the weave provides a repeating 
rectangular lattice with a scale of a fraction of a millimeter.  A venetian blind is a 
repeating assembly of slats along one direction, with a repeat dimension on the order of a 
few centimeters.  A sun screen sometimes consists of either (or both) horizontal or 
vertical slats with a dimension of a few millimeters, while a drape has the rectangular 
weave of the shade with a superimposed and much larger linear inhomogeneity caused by 
folds, which are not strictly regular.  All of the systems have irregularities stemming from 
broad manufacturing tolerances; they are not precision optical components. 

This led the researchers in 548-RP to characterize shading elements by their spatially 
averaged optical properties.  The averaging is done over a spatial region that is large 
compared with the features of the shading element, e.g., the slat width for a venetian 
blind.  This allowed them to replace the shading systems with spatially uniform layer 
averages, and to do calculations using only the bidirectional solar-optical properties of 
the average layers (and the specular glazing layers).  While they measured only the 
spectrally averaged layer properties, using a large-sample gonioradiometer, it was clear 
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that the method could be extended to gonio-spectrometric measurements, and could also 
be extended to include polarization.  (A consistent treatment of polarization has not yet 
even been included in the treatment of multilayer specular glazings.)  They also 
developed a calorimetric method for measuring the layer-specific inward-flowing 
fractions, Nk.  This was necessary because the heat transfer coefficients necessary to do a 
heat transfer analysis, as is done for Equation 1, have not been determined for the thermal 
and geometrical situations that occur for most combinations of shading and glazing 
layers. 

In principle, then, the stage was set for treating the solar heat gain through complex 
glazings in the same way as unshaded glazings.  Detailed compilations of shading layer 
properties (like the WINDOW 4.1 Spectral Data Library for specular glazings) could be 
used, together with specular glazing properties and tabulated measurements of layer 
inward-flowing fractions, as inputs to standard calculation programs that would produce 
the T and Ak functions needed in Equation 2.  Unfortunately, since the conclusion of 548-
RP the necessary standardized instrumentation for measuring the shading layer properties 
has not been developed, the library of bidirectional optical properties has not been 
compiled, and the small table of inward-flowing fractions produced by the project (which 
is currently in the ASHRAE Handbook) has not been much extended, although some 
work in the latter direction has occurred.  (Collins and Harrison 1999)  As a result, there 
has been no way to incorporate the outcome of this research project into the ASHRAE 
Handbook of Fundamentals in a way that would enable designers to predict the solar heat 
gain of shaded fenestrations. 

This paper is intended to bridge the gap temporarily, by substituting simple assumptions 
for the missing data on shading layer bidirectional solar-optical properties.  It is not 
argued that these assumptions provide accurate representations of shading layer 
properties, although for some shading elements this will be the case.  Rather, the 
assumptions allow the use of an accurate characterization of the unshaded glazing layers 
occurring in the system.  Often the angular dependence of the specular glazings is a much 
more important determinant of the SHGC of a glazing with shading than the specific 
properties of the shading layer.  In these cases even a very poor characterization of the 
latter can yield a useful result.  

CHARACTERIZING MULTILAYER GLAZING SYSTEMS WITH SHADING 

Problem Description 

In any multilayer optical system, one can visualize any collection of sequential layers as 
a sub-system and replace the collection by a “black-box” single layer with the same 
overall properties as the subsystem.  This means that with complete generality one may 
consider any system as a two-layer system.  In a system consisting of L layers, the sub-
system of the first (L-1) layers can be considered to be the first "layer", while the other 
"layer" is the Lth layer.  The properties (i.e., overall transmittance, front and back 
reflectance) of this system of two “layers” can then be derived as if one were dealing 
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with a two-layer system, and the result will be the properties of the L-layer system 
expressed in terms of those for the layer L and those for the subsystem consisting of 
layers 1 through (L-1). 

We therefore consider the combination of a specular layer (an unshaded glazing system, 
G) and a shading layer, S.  For definiteness we will consider a shading layer that is 
interior to G, although later we will expand this to include any position for the shading. 

Let us first exclude a trivial case that would otherwise complicate the discussion.  Most 
shading layers, being inhomogeneous, have regions for which radiation reaching the 
layer pass through without encountering the material of the shading at all, as illustrated in 
Figure 1.  We shall term these regions “gaps” in the shading layer.  Figure 1(a) depicts a 
venetian blind, for which some radiation may pass between the slats; Figure 1(b) depicts 
a woven material for which some of the radiation passes between the threads.  (It is 
assumed that the distance between the threads is very large compared with the 
wavelength of the radiation.)  In both cases, the radiation has essentially passed through 
an unshaded system.  We divide the glazing area into a fraction, u(θ, φ), for which the 
radiation may pass through the entire system without encountering any shading material, 
and the remainder, 1 , for which this is not the case.  Then for a total glazed 
area  the area  can be treated as an unshaded glazing and Equation 1 applied, 
and we can restrict our attention to the reduced shading area A

− u(θ, φ)
u(θ, φ)A0 A0

G = A0 1 − u(θ, φ)( ), for 
which the shading is involved in an essential way.  (We note that interreflections between 
the shading layer and the glazing break down this neat separation, a point we will discuss 
below.)  

Consider the system shown in Figure 2(a).  Radiation is incident on this system from a 
direction , (a vector) and we consider radiation that passes through the 
glazing system G and strikes the shading layer at x  (a position vector, x

ϑ 0 = (θ0 , φ0 )
0 0 = (x0, y0 ), 

assuming that the z-axis of a three-dimensional coordinate system is chosen 
perpendicular to the glazing plane).  If the incident irradiance is E0, then the irradiance at 

 will be x0 E0TG(θ0 ).  The total amount of radiation passing through the shading layer S 
and emerging in the direction ϑ e = (θe, φe) will be given by 

 ISYS
(0) (ϑ 0;ϑ e) = E0TG(θ0 )TS (x0, ϑ0; ϑe)d

2x0∫ , (3) 

where the superscript indicates that no interreflections between the layers have yet been 
included in the calculation.  The quantity TS(x0, ϑ 0; ϑ e)

0

 is the bidirectional front 
transmittance of the shading layer S at the point x .  [We have omitted any qualifying 
notation to distinguish between front and back transmittance here because in this section 
we will only use the front transmittance of the shading layer.  Note, however, that unlike 
specular glazings, bidirectional transmittances are not symmetric; rather 
TS

f (x,ϑ1 ;ϑ2 ) = TS
b (x, ϑ2; ϑ1) , where the superscripts f and b denote front and back 

incidence.]  This quantity can be converted to an expression for the system transmittance 
(neglecting interreflections) by dividing by the incident energy: 
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 TSYS
(0)(ϑ0; ϑe) =

1
AG

TG (θ0 )TS(x0 , ϑ0 ; ϑe )d2x0∫  (3a) 

In addition, radiation at point x  may be reflected by the shading layer, re-reflected by 
the glazing, and re-incident on the shading layer at point x , as indicated in the figure.  
The radiation that is then transmitted by the shading layer and emerges in the direction 

 will be 

0

1

ϑ e

 TSYS
(1) (ϑ 0;ϑe ) =

1
AG

TG(θ0 ) RS
f (x0 ,ϑ0 ;ϑ1 )RG

b (θ1)TS (x1,ϑ1; ϑe)cos(θ1)dΩ1∫[ ]d2x0∫  (4) 

where RS
f (x0, ϑ0; ϑ1)

x0

 is the front bidirectional reflectance of the shading layer at the 
point .  Front and back reflectances may be different, since incidence from the back 
side in a given direction may present a completely different physical situation.  Now the 
shading layer transmittance appearing in the expression, TS(x1 , ϑ1; ϑ e) , is for a different 
position and incident angle, and could be completely different from that in Equation 3, as 
Figure 2(b) illustrates.  Note that x  is not an independent quantity; for a given system 
geometry, it can be calculated from x  and 

1

0 ϑ1 .  The expression introduces yet another 
integral when one considers two interreflections, 

 

TSYS
(2)(ϑ0; ϑe) =
1

AG

TG(θ0 ) RS
f (x0 ,ϑ0 ;ϑ1 )RG

b (θ1)RS
f (x1, ϑ1;ϑ2 )cos(θ1 )dΩ1∫[∫{∫

×RG
b (θ2 )TS (x2,ϑ 2;ϑ e)]cos(θ2 )dΩ2}d2x0

 (5) 

Continuing this process develops the familiar multiple reflectance series for the system 
transmittance.  In the case of uniform specular glazings, the new terms introduced with 
each reflection are the same, and the series can be summed analytically.  Here, in 
contrast, each new reflectance introduces a complicated new integral that is buried in the 
integral produced by the previous reflection.  Not only do the once- and twice-reflected 
rays arrive at different points on the shading layer, the angles at which they reflect from 
the glazing system are also different.   

Research project 548-RP dealt with this situation through its spatial averaging 
methodology and obtained a matrix series using the average bidirectional properties of 
the layers.  An alternative approach might be to carry through the expansion explicitly, 
using measured bidirectional properties at each point of the shading system.  In practice, 
since the materials making up the shading layer could be considered to have 
macroscopically uniform properties, this would require a detailed model of the system 
geometry together with point measurements with a gonio-radiometer.  Of course, all of 
the above calculations should be done for each wavelength, with spectral averaging 
applied to the result, so more precisely measurements with a spectro-gonio-radiometer 
are necessary.  Research into this method is also being pursued, but has not yet provided 
any data. 
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Simplifying Assumptions 

Given the absence of data, one would like to derive whatever consequences are possible 
from the information normally obtainable for a shading system, and one would like to 
simplify the solar-optical calculations into something tractable.  The data normally 
obtainable for a shading layer are the hemispherical transmittance and reflectance, either 
of the layer itself, or, in the case of venetian blinds, of the slats.  In the absence of any 
other information, the most natural simplifying assumption is that the shading layer is a 
uniform diffuser.  It turns out that this assumption also provides the necessary 
simplification of the calculation. 

If the shading layer is a uniform diffuser, then RS
f  and TS  are constants independent of 

incident or outgoing angle.  These constants can be related immediately to the 
hemispherical transmittances, since 

 
RS

fH = RS
f cos(θ)dΩ∫ = πRS

f

TS
fH = TS cos(θ)dΩ∫ = πTS

 (6) 

When these quantities are put into Equation 4 we obtain 

 TSYS
(1) (ϑ 0;ϑe ) = TG(θ0 )RS

fH 1
π

RG
b (θ1)cos(θ1 )dΩ1∫ 

  
 
  

TS
fH

π
 (7) 

The quantity in brackets is the average back reflectance of the (specular) glazing system 
for uniform diffuse incident irradiation: 

 
RG

b
D

=
1
π

RG
b (θ1)cos(θ1)dΩ1∫

= 2 RG
b (θ

0

π
2

∫ )cos(θ)sin(θ)dθ
 (8) 

Integrating over the outgoing hemisphere in Equation 7 is equivalent to multiplying by 
, and we can use this fact and Equation 8 to express the total system directional-

hemispherical transmittance, combining Equations 3a, 4 and 5, in which we now 
recognize the standard multiple reflection series, 

π

 

TSYS
fH (θ) = TG(θ) 1+ RS

fH RG
b

D
+ RS

fH RG
b

D( )2
+ ... 

  
 
  TS

fH

=
TG(θ)TS

fH

1− RS
fH RG

b
D

. (9) 

(Since we are now dealing with a single angle, the subscript on the incident angle has 
been dropped.) 
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The key insight to be gained from this discussion is the observation that, if the shading 
layer is considered as a uniform diffuser, then the net effect of a reflection from the 
shading layer to the glazing system and back to the shading layer (i.e., one round-trip) is 
to produce a hemispherical average of the glazing system (back) reflectance, multiplied 
by the shading hemispherical (front) reflectance.  Each subsequent interreflection will 
produce another factor of this product.  Similarly, a (diffuse) transmission through a 
shading layer will cause all further interactions (whether transmission or reflection) with 
the downstream portion of the glazing system to involve the diffuse average properties of 
the glazing. 

Conversely, if the shading layer is not a uniform diffuser, the radiation reflected from or 
transmitted through it will effectively average over the angular properties of the glazing 
system in a different way.  This means that if the uniform diffuser assumption for the 
shading layer fails, the effect could be large or small, depending on the glazing system 
characteristics.  

APPROXIMATE ANALYSIS OF SHADED GLAZING SYSTEMS 

The conclusions of the previous section allow us to calculate the approximate properties 
for any type of shaded glazing, but before doing so it will be necessary to introduce some 
notation.  We shall consider glazings consisting of one shading layer, which we denote 
by S, and some number L of transparent layers.  So in general we shall be discussing a 
system of L+1 layers.  We will number these layers sequentially from outside to inside, 
so that we can refer to a specific layer by its position, n, in the assembly.  If we removed 
a particular layer, n, from the assembly and measured its solar-optical properties in 
isolation, the resulting transmission, reflectance and absorption would be denoted Tn , Rn , 
and  An .   

These quantities depend on a number of physical variables.  All depend on the incident 
direction, the wavelength of the radiation, and the polarization state of the radiation 
entering them.  The wavelength and polarization dependence will not be noted explicitly 
here.  In principle, all of the equations to follow should be calculated for each wavelength 
and polarization, and the final result averaged over the polarization and wavelength 
spectrum of the incident radiation. In practice, however, because of the limited 
availability of characterization data, polarizations are typically averaged for each layer 
(assuming unpolarized incident radiation).  For shading layers, a similar lack of data 
leads to use of wavelength-averaged layer properties.  Neither practice is strictly correct. 

In the discussion below, in order to avoid rewriting equations for special cases, it will 
sometimes happen that impossible combinations of indices appear in the equations, i.e., 
indices that refer to a nonexistent layer.  For example, if the first layer of the system is 
layer 1 (and we have not defined a layer 0, as will occasionally happen below), then 
reference to a layer k-1 becomes nonsensical for k=1.  This possibility will particularly 
arise in the discussion of layer absorptances.  We deal with these cases by defining all 
nonexistent layers to have T=1, R=0, and A=0. 
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As noted above, for specular glazings the solar-optical properties will depend on the 
incident angle, e.g., Tn(θ), while for a shading layer it is a bidirectional quantity, e.g., 
Tn(ϑi ; ϑe )

Tn

 for the incident (i) and emerging (e) directions, each of which is specified by a 
pair of angles.  In addition, the properties of the layer depend on the side of the layer on 
which the radiation is incident.  We shall denote this by the superscripts f (“front”, for 
radiation coming from the outside) and b (“back”, for radiation coming from the inside), 
e.g., f (ϑi ; ϑ e).  (To avoid confusion with exponentiation, all quantities raised to a 
power will be enclosed in parentheses.)  As noted above, for specular layers (or systems) 
it is always true that Tn

f (θ) = Tn
b (θ) ≡ Tn (θ) , so that we can drop the superscript, but 

this is not the case for Rn
f (θ)  and  An

f (θ).  For nonspecular layers the analogous relation is 
Tn

f (ϑi ; ϑ e)

Tn
fH (ϑi ) =

= Tn
b

hemisphere
∫∫

(ϑ e

T

; ϑi )

n
f (ϑi ;

.  We shall also use the superscript H to denote a directional-
hemispherical quantity, i.e., a bidirectional one summed over the outgoing direction, e.g., 

.  Note that for a purely specular layer this operation 

does nothing, since outgoing radiation only occurs in a single direction: T

ϑe )d2ϑ e

n
H(θ) ≡ Tn (θ) . 

As also noted above, adjacent layers can be collected together and considered as systems.  
The notation for this is summarized in Figure 3, and consists of using as subscripts the 
layer numbers of the first and last layers in the system to identify the overall system 
properties.  It is important to distinguish that these are different from the isolated layer 
properties.  For example, Rm,n

f  gives the fraction of the radiation incident on layer m that 
is reflected, and includes multiple interreflections among layers m through n, but none 
from layers lying to the inside of (i.e., with a number larger than) layer n.  (Of course, 
Rn, n

f ≡ Rn
f .)  This fact necessitates additional notation for specifying layer absorptions.  

Consider a (sub)system consisting of the layers m through n.  This system has an 
absorptance,   Am, n

f = 1 − Tm, n
f − Rm, n

f .  However, the absorptance actually takes place in 
the individual layers of the system and we denote this layer absorptance within a system 
by   Ak ; m, n( )

f  for the kth layer.  We note that the quantity   Ak  appearing in Equations 1 and 2 
should be denoted more correctly   Ak ;(1, L)

f .  They are not isolated-layer absorptances, but 
rather layer absorptances within the system of layers 1 through L.  Absorptance in the 
layer k comes from radiation incident both on its front surface and on its back surface 
(due to multiple reflectance from downstream layers).  The superscript f denotes that this 
absorption is all due to radiation incident on the front side of layer m. 

Complete formulas for assemblies of arbitrary layers are given in (Klems 1994A; Klems 
1994B).  Here we reproduce the key composition formulas, specialized to the case of 
specular glazings, for combining two adjacent layers or subsystems, M and N: 

 TM, N (θ) =
TM(θ)TN (θ)

1 − RN
b (θ)RM

f (θ)
 (10a) 

 RM, N
f (θ) = RM

f (θ) +
TM(θ)RN

f (θ)TN (θ)
1 − RM

b (θ)RN
f (θ)

 (10b) 
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 RM, N
b (θ) = RN

b (θ) +
TM(θ)RM

b (θ)TN (θ)
1 − RM

b (θ)RN
f (θ)

 (10c) 

Since M and N may be either adjacent layers or subsystems, these equations can be used 
to generate all possible cases.  For example, if M were a subsystem consisting of layers 1 
through L-1 (M=(1,L-1)) and N were the single layer L, then Equations 10 would give 
the “recursion relations” that yield the properties of the system (1,L) from the properties 
of the subsystem (1,L-1) and those of the layer L. The situation is somewhat more 
complex for the layer absorptances.  We consider the layer k, lying somewhere between 
layer m and layer n in the subsystem (m,n), and the layer absorptances are given by 

 
  
Ak ;(m, n)

f (θ) =
Tm, k −1(θ)Ak

f (θ)
1 − Rm , k − 1

b (θ)Rk, n
f (θ)

+
Tm, k (θ)Rk + 1, n

f (θ)Ak
b (θ)

1 − Rm, k
b (θ)Rk +1, n

f (θ)
 (11a) 

 
  
Ak ;(m, n)

b (θ) =
Tk +1, n (θ)Ak

b(θ)
1 − Rm , k

b (θ)Rk +1, n
f (θ)

+
Tk , m(θ)Rm, k− 1

b (θ)Ak
f (θ)

1 − Rm, k −1
b (θ)Rk ,n

f (θ)
 . (11b) 

As can be seen from these equations, absorption in a layer can be due to both front- and 
back-incident radiation on the layer, due to multiple reflections within the subsystem 
(m,n).  The total subsystem absorptances are of course given by 

 
  
Am, n

f (θ) = Ak; (m, n)
f (θ)

k = m

n

∑  (12a) 

 
  
Am, n

b (θ) = Ak; (m, n)
b (θ)

k = m

n

∑  . (12b) 

With these preliminaries taken care of, we are now in a position to treat shading systems 
consisting of a single diffusing shading layer combined with an arbitrary specular glazing 
system of L layers.  

Interior Shading 

Transmission through a system with an interior shading layer has already been given in 
Equation 9, but we restate it here in the more detailed notation described above.  The 
unshaded glazing system has L layers, so the interior shading layer is taken to be S=L+1 
in what is now an L+1 layer system.  Equation 9 for the total system transmittance now 
becomes 

 T1, L +1
fH (θ) =

T1, L(θ)TS
fH

1 − RS
fH R1, L

b
D

  . (13a) 
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For diffuse incident solar radiation one uses the hemispherical average of this quantity, 

 T1, L +1
fH

D
=

T1, L D
TS

fH

1 − RS
fH R1, L

b
D

 (13b) 

Absorptance in the shading layer is given by 

 
  
AS; 1, L + 1( )

f (θ) ≡ AL + 1; 1,L +1( )
f (θ) =

T1,L (θ)AS
f

1 − RS
fH R1, L

b
D

 (14a) 

while for other layers (1 ) the absorptance can be expressed in terms of the 
absorptance for the unshaded L-layer system, which may be computed from Equation 
11a: 

≤ k ≤ L

 
  
Ak; 1,L +1( )

f (θ) = Ak ; 1,L( )
f (θ) + Ak; 1,L( )

b

D

T1,L (θ)RS
fH

1 − RS
fH R1, L

b
D

 (14b) 

The hemispherical averaging of these quantities is straightforward: 

 
  

AS; 1,L +1( )
f

D
=

T1,L D
AS

f

1 − RS
fH R1, L

b
D

 (14c) 

 
  

Ak ; 1, L + 1( )
f

D
= Ak; 1,L( )

f

D
+ Ak ; 1,L( )

b

D

T1, L D
RS

fH

1 − RS
fH R1,L

b
D

 (14d) 

These equations apply to the reduced shading area of the glazing, .  The corresponding 
unshaded glazing system properties should be applied to the unshaded area, u . 

AG

(θ, φ)A0

Putting Equation 2 into the present notation, the solar heat gain coefficient for the shaded 
area of the overall system is 

 
  
SHGC1,L +1

shaded (θ) = T1,L +1
fH (θ) + Nk ⋅ Ak ;(1,L +1)

f (θ)
k =1

L + 1

∑  (15a) 

which becomes, after combining the expression with Equations 13 and 14, 
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SHGC1,L +1
shaded (θ) =

T1,L (θ) ⋅ TS
fH + NL +1 ⋅ AS

f + RS
fH Nk ⋅ Ak; 1, L( )

b

Dk= 1

L

∑ 

 
 

 

 
 

1 − RS
fH R1,L

b
D

+ Nk ⋅ Ak ; 1, L( )
f (θ)

k =1

L

∑

 , (15b) 

where Equations 12 have been used to express the overall absorption in the unshaded 
glazing.  It can be seen that this expression mixes the optical properties of the glazing and 
shading systems in a complicated manner. 

While the optical properties for the subsystem (1,L) will be the same as those of the 
unshaded glazing, the values of Nk  in Equations 15a and 15b for layers in the glazing 
system (1 ≤ k ≤ L) are not the same as the values Nk

(0) for the glazing system without 
shading.  The presence of the shading layer will alter the thermal transfer through the 
system to some degree, with the result that there will be a change in the inward-flowing 
fractions of the glazing layers, Nk = Nk

(0) + ∆Nk .  Consequently, when the unshaded 
equivalents of Equations 14 are put into Equation 2, the result is not exactly the solar heat 
gain coefficient of the unshaded glazing.  Instead we obtain 

 
  
SHGC1,L +1

unshaded (θ) = SHGC1,L(θ) + ∆Nk Ak;(1,L )
f (θ)

k= 1

L

∑  (15c) 

The SHGC and layer absorptions appearing on the right-hand side of this equation are 
those of the glazing system without shading. 

Exterior and Between-Glass Shading 

For exterior and between-glass shading the calculations become much more complex.  
They are given in Appendix B, and in the following sections we list the resulting 
formulas for the solar-optical quantities entering Equation 1, front transmittance and 
layer absorptances.  The resulting equations for SHGC are quite complicated and not 
very illuminating; they are contained in Appendix B. 

A new geometric complication enters the problem when there is glazing to the inward 
side of the shading (i.e., the side away from the incident radiation source).  Radiation 
passing through the gaps in the shading may now be specularly reflected by the glazing.  
Some of this reflected radiation may go back through the gaps; the remainder will strike 
the shading layer material from the back side, where it will be diffusely reflected.  This 
situation is illustrated in Figure 4.  The fraction that strikes the shading is denoted as 

.  This is a geometric quantity, and it is discussed further in Appendix B. s (θ, φ)b

The scheme for renumbering the layers and referring back to the optical properties of the 
glazing without the shading layer also becomes more complicated, particularly in the 
case of between-glass shading.  For this case the numbering schemes are illustrated in 
Figure 5.  Layer numbering is explained in more detail in Appendix B. 
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Exterior Shading 

For exterior shading Equation B.2a gives the system transmittance (the shading layer 
number is S=0): 

 

TS, L
fH (θ) = u(θ, φ)T1, L(θ) + 1 − u(θ, φ)( )

TS
fH T1, L D

1 − RS
bH R1, L

f
D

+
u(θ, φ)R1, L

f (θ)s b(θ, φ)RS
bH T1, L D

1 − RS
bH R1, L

f
D

 (16a) 

For incident diffuse solar radiation one uses the hemispherical average of this quantity, 
which is given in Appendix B.  The layer absorptance in the shading layer (S=0) is given 
by Equation B.3a: 

 

  

AS;(S, L )
f (θ) = 1 − u(θ, φ)( ) AS

f +
AS

b R1, L
f (θ)

1 − RS
bH R1, L

f
D

 

 
 
 

 

 
 
 

+
u(θ, φ)R1, L

f (θ)s b(θ, φ)AS
b

1 − RS
bH R1, L

f
D

 (16b) 

and for the other layers (1 ) the layer absorptances are expressed in terms of the 
layer absorptances of the unshaded system in Equation B.3b: 

≤ k ≤ L

 

  

Ak ;(S, L )
f (θ) = u(θ, φ)Ak; (1, L)

f (θ) + 1 − u(θ, φ)( )
TS

fH Ak ;(1, L)
f

D

1 − RS
bH R1, L

f
D

+
u(θ, φ)R1, L

f (θ)s b(θ, φ)RS
bH Ak ;(1, L )

f
D

1 − RS
bH R1, L

f
D

  . (16c) 

Averaging these quantities to produce the corresponding ones applicable for diffuse 
incident solar is straightforward, as explained in Appendix B. 

Between-Glass Shading 

For between-glass shading the system transmittance consists of three parts 

 TS, L +1
fH (θ) = Tunshaded + TS, L +1

fH (θ)[ ]shaded
+ TS, L +1

fH (θ)[ ]rerefl
 (17a) 

which are given in Equations B.5a, B.5c and B.5d: 

 Tunshaded = u(θ, φ)T1,L
unshaded (θ) 1 − sb (θ, φ)R1, S −1

b (θ)RS + 1,L +1
f (θ)[ ] (17b) 
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 T1, L + 1

fH (θ)[ ]
shaded

=
1 − u (θ , φ)( )T1, S − 1 (θ)TS

fH TS + 1, L + 1 D

1 − R1, S − 1

b

D
RS

fH − RS

bH + R1, S − 1

b

D
RS

fH RS

bH − TS

fHTS

bH( )[ ] RS + 1, L + 1

f

D

 (17c) 

 T1 ,L +1
fH (θ)[ ]rerefl

=
u(θ, φ )sb (θ, φ)R

S + 1, L + 1

f (θ ) T
S + 1, L + 1 D

R
S

bH + T
S

bHT
S

fH − R
S

bHR
S

fH( ) R
1, S − 1

b

D
( )

1 − R
S

fH R
1, S − 1

b

D
− R

S

bH + T
S

bHT
S

fH − R
S

bHR
S

fH( ) R
1, S − 1

b

D
( ) R

S + 1, L + 1

f

D

  (17d) 

The shading layer absorptance is given in Equation B.7a: 

 

  

A S ; (1, L + 1)
f =

1 − u (θ, φ)( )T1, S − 1 (θ)A S
f

1 − R1, S − 1
bH

D
RS , L + 1

fH

D

+
u(θ , φ)T1, S − 1 (θ)RS + 1, L + 1

f (θ)sb (θ , φ) + 1 − u (θ , φ)( )T1, S
fH (θ) RS + 1, L + 1

fH

D[ ]A S : (1, S )
b

1 − R1, S
bH

D
RS + 1, L + 1

f

D

 (17e) 

For glazing layers outside the shading (1 ≤ k ≤ S-1) the layer absorptances are given in 
Equation B.7b: 

 

  

Ak;(1, L + 1)
f (θ) = u(θ, φ)Ak;(1,L )

f , unshaded(θ)

+ 1 − u(θ, φ)( ) Ak :(1, S −1)
f (θ) +

T1, S −1(θ)RS
fH Ak:(1,S − 1)

b
D

1 − RS,L +1
f

D
R1, S −1

b
D

 

 
  

 

 
  

 (17f) 

and for glazing layers in inside the shading (S+1 ≤ k ≤ L+1), Equation B.7b gives 

 

  

Ak;(1, L + 1)
f (θ) = u(θ, φ)Ak;(1,L )

f , unshaded(θ)

+ 1 − u(θ, φ)( )
T1, S

fH (θ) Ak:(S + 1,L +1)
f

D

1 − RS +1,L +1
f

D
R1, S

b
D

 (17g)  

SHADING MULTIPLIERS 

It is clear from the above equations and those in Appendix B that the solar heat gain 
coefficient of a glazing with shading depends on the incident angle and the glazing layer 
properties in a complex way.  In earlier ASHRAE treatments of shading, assuming 
simple unshaded glazing systems, a simple multiplier, the shading coefficient, was used 
to determine SHGC’s for design purposes.  Shading coefficients were determined largely 
by measurements.  As an interim measure, until more accurate data is available, it is 
useful to cast the above discussion into a form that would allow these measurements to be 
used for the systems for which they are appropriate.  In the following section we cast the 
solar heat gain coefficient for each shading type into an approximate multiplier form.  
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From the above equations we can then determine an expression (in general very 
complicated) for the multiplier.  This expression can then be evaluated for a range of 
glazing classes to determine when the multiplier is reasonably constant, and therefore 
useful for design purposes. 

Interior Shading 

On physical grounds, interior shading should behave (in simple cases) like an attenuation 
of the energy flux admitted by the unshaded glazing SHGC.  The latter determines the 
amount of energy arriving at the shading layer.  If the glazing system has a high 
reflectance (e.g., at high incident angle), then little energy should reach the shading layer, 
but approximately the same fraction of this energy would be admitted.  This picture 
would give a quantity we could call the Interior (solar) Acceptance Coefficient, IAC: 

 SHGC1,L +1
shaded (θ) = IAC ⋅ SHGC1,L (θ)  (18a) 

(with a similar relation holding between the SHGC’s for diffuse incidence).  If one 
recasts Equation 15b into this form, an expression for the quantity IAC is obtained: 

 

  

IAC =
1

1 − RS
fH R1, L

b
D

TS
fH + NS AS

f + RS
fH SHGC1, L D

− T1, L D( )[ ]

+
SHGC1, L(θ) − T1, L(θ)( )

SHGC1, L(θ)
1 −

TS
fH + NS AS

f + RS
fH SHGC1, L D

− T1, L D( )
1 − RS

fH R1,L
b

D

 

 

 
 

 

 

 
 

+

∆NkAk ; 1, L( )
f (θ)

k =1

L

∑ + ∆Nk Ak ; 1,L( )
b

D
k= 1

L

∑ T1, L(θ)RS
fH

1 − RS
fH R1,L

b
D

SHGC1,L (θ)

 (18b) 

A diffuse analog of IAC could be obtained by substituting the hemispherical average for 
all incident-angle dependent quantities in Equation 18b; however, to the extent that this 
calculation gives a different value, it indicates that the basic approximation of Equation 
18a is failing.  In the picture that the shading layer simply attenuates the energy admitted 
by the glazing, this attenuation should be insensitive to incident angle, since the shading 
layer is a uniform diffuser.  The physical processes that create a difference between 
specular and diffuse radiation, namely multiple reflections and modifications of the 
inward-flowing fractions of the glazing layers, have been left out of the simple 
attenuation picture of Equation 18a.  Accordingly, in using Equation 18a to estimate solar 
heat gains, the same value of IAC will be used for both direct and diffuse radiation. 

Equation 18b has the correct behavior in extreme cases.  Once energy has reached the 
shading layer (either as solar-optical radiation or as heat flow), there are only two 
mechanisms by which the shading layer can reject it:  solar optical radiation can be 
reflected back out through the glazing, or it can be absorbed and conducted back 
outward, which requires that NS  be small.  In addition, the shading layer can reduce the 
inward flow of energy absorbed in the glazing layers if its presence produces negative 
values of ∆Nk  for the glazing layers.  Both of the thermal effects are maximal for 
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shading applied to the interior of single glazing.  As the number of glazing layers 
increases, NS  also increases, and the shading layer has progressively less effect on the 
values of Nk . 

q

DN

SHGC(S,

For the limiting case of a glazing with high thermal resistance, we can set NS = 1 and 
∆Nk = 0.  Then   TS

fH + NS AS
f = 1 − RS

fH  and Equation 18b becomes 

 IAC ≈
1 − RS

fH

1 − RS
fH R1, L

b
D

+ Increases in absorption( ) 

exhibiting the fact that energy can be rejected only by reflection from the shading layer. 

At the level of accuracy implicit in the use of the IAC (i.e., not very high) one should 
neglect the second term in Equation 15c.  The equation for the heat flux through the 
fenestration area A0 then becomes 

 
= EDN cos(θ)SHGC1, L(θ) u(θ, φ) + 1 − u(θ, φ)( ) ⋅ IAC[ ]
+ Ed + Er( ) SHGC1,L D

u(θ, φ) D + 1 − u(θ, φ)( )
D

⋅ IAC[ ] (19) 

where E  is the beam solar irradiance, Ed  incident irradiance from the sky excluding 
the sun, and Er  is the incident irradiance from ground-reflected radiation.  Both of the 
latter are assumed to be uniformly diffuse. 

Exterior Shading 

With the exception of radiation passing through gaps in the shading, an exterior shading 
layer reduces the amount of radiation incident on the glazing system and converts it all to 
diffuse.  It is therefore reasonable to define an “Exterior (solar) Acceptance Coefficient”, 
EAC: 

 L )(θ, φ) ≈ u(θ, φ)SHGC(1, L)(θ) + 1 − u(θ, φ)( ) ⋅ EAC ⋅ SHGC(1, L) D
 (20a) 

where, using Equation B.4, 
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EAC =
TS

fH

1 − RS
bH R1, L

f
D

+
u(θ, φ)R1,L

f (θ)sb (θ, φ)RS
bH

1 − u(θ, φ)( )1 − RS
bH R1, L

f
D( )

 

 

 
 

 

 

 
 

+
1

SHGC(1, L )

×
 

 
 

 
 

u(θ, φ)
1 − u(θ, φ)( ) ∆NkAk;(1, L )

f (θ)
k =1

L

∑

+
TS

fH

1 − RS
bH R1, L

f
D

+
u(θ, φ)R1,L

f (θ)sb (θ, φ)RS
bH

1 − u(θ, φ)( ) 1 − RS
bH R1,L

f
D( )

 

 

 
 

 

 

 
 

∆Nk Ak;(1, L )
f

D
k = 1

L

∑

+NS ⋅ AS
f +

TS
fH R1, L

f
D

1 − RS
bH R1,L

f
D

+
u(θ, φ)R1,L

f (θ)sb (θ, φ)

1 − u(θ, φ)( ) 1 − RS
bH R1, L

f
D( )

 

 
 
 

 

 
 
 AS

b
 

 

 
 
 

 

 

 
 
 

 

 
 

 
 

 (20b) 

The part of the expression within the curly brackets must be relatively small in order for 
Equation 20a to be of much value.  This will occur when adding the exterior shading 
layer has little effect on the inward-flowing fractions of the glazing system layers ( ∆Nk  
of small magniture) and little of the energy absorbed in the shading is transferred into the 
interior space (  NS AS

f  small).  These assumptions are reasonable if there is good 
ventilation of the space between the exterior shading and the glazing, and if the heat flux 
due to thermal radiation from the shading is not too large. 

Between-Glass Shading 

The case of between glass shading is handled by conceptually dividing the fenestration 
system into the outer glazing, which is unshaded, and the combination of the shading 
layer and the inner glazing.  From this point of view, the system is a glazing with interior 
shading, and accordingly the heat flux should have a form similar to Equation 19: 

 

q = EDN cos(θ)u(θ, φ)SHGC1,L
unshaded (θ) + Ed + Er( ) u(θ, φ) D SHGC1, L

unshaded
D

+
 

 
 EDN cos(θ) 1 − u(θ, φ)( )SHGC1, S −1(θ)

+ Ed + Er( ) 1 − u(θ, φ)( )
D

SHGC1, S −1 D

 

 
 ⋅ BAC

 (21) 

This means that the SHGC for the complete system must have the form 

 SHGC1,L +1(θ) = u(θ, φ))SHGC1,L
unshaded (θ) + 1 − u(θ, φ)( )SHGC1,S − 1(θ) ⋅ BAC[ ] (22) 

with a similar equation holding for the hemispherical average quantities.  Requiring the 
solar heat gain coefficient to have this form leads to an expression for the “Between-pane 
(solar) Acceptance Coefficient”, BAC.  The complete expression is given in Appendix C.  
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It contains a number of terms involving re-reflection of radiation that passes through gaps 
in the shading and modifications of the inward-fraction of absorbed energy due to the 
presence of the shading layer.  These terms are of interest only in that, to the extent they 
are significant, it implies that equation 21 should not be used. 

In the cases where these terms can be neglected, the expression for BAC is 

 

  

BAC ≈
TS, L + 1

fH (θ)
1 − R1, S −1

b
D

RS,L +1
fH (θ)

+
RS

fH Nk
k= 1

S − 1

∑ Ak :(1,S − 1)
b

D

1 − RS, L + 1
f

D
R1, S −1

b
D

+
TS

fH Nk
k = S + 1

L +1

∑ Ak:(S + 1,L +1)
f

D

1 − RS +1, L + 1
f

D
R1,S

b
D( )1 − R1, S −1

b RS
fH( )

+N S
AS

f

1 − R1,S − 1
bH

D
RS,L +1

fH
D

+ NS

RS +1, L + 1
fH

D
TS

fH AS:(1,S )
b

1 − R1, S
bH RS + 1,L +1

f
D( )1 − R1, S −1

b RS
fH( )

(23) 

This expression can be considered as expressing the fraction of the energy incident on the 
“interior shading” system that reaches the building interior space.  The first term in the 
expression gives the amount of radiation transmitted.  The second and third terms 
represent energy absorbed in the glazing layers after either reflection or transmission by 
the shading layer, and the last two terms represent energy absorbed in the shading layer. 

THE 2001 VERSION OF THE HANDBOOK OF FUNDAMENTALS 

The calculations and approximations described in this paper formed the basis for 
updating the equations for solar heat gain in shaded fenestrations in the forthcoming 
version of the Handbook of Fundamentals.  The equations given above were presented 
there in a somewhat simplified form.  In that treatment it was assumed that sb(θ, φ) = 0 , 
and u(θ, φ) D = 0  in order to reduce the complexity of the material presented.  These 
are likely to be good approximations in any case.  They have been relaxed here in order 
to present a complete treatment that can be applied to unusual cases. 

The existing tables of shading coefficients for simple systems were used to construct 
tables of IAC, EAC, and BAC.  The reasoning is as follows:  The shading coefficient 
tables were originally constructed from measurements, usually made at a single incident 
angle, and the measured SHGC for the system was converted to shading coefficient by 
dividing by the SHGC for single glazing at that angle.  The shading coefficient was 
assumed to be angle-independent, and in the shading coefficient/solar heat gain factor 
treatment the SHGC for standard single glazing was contained in the solar heat gain 
factor, which depended on incident angle.  Because the IAC, EAC and BAC characterize 
subsystems for which the outer layer is a uniform diffuser, they can be expected to be 
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independent of incident angle under the assumption u(θ, φ) = 0 .  This assumption was 
made for all of the tables except that of EAC for louvered sun screens.  The table value of 
shading coefficient was assumed to apply at normal incidence, and it was multiplied by 
the SHGC for standard 3mm (1/8 inch) clear single glazing at normal incidence to give 
back the system SHGC.  Equation 18a, 20a or 22 was then applied with the appropriate 
glazing system SHGC at normal incidence to calculate the multiplier listed in the table. 

For louvered sun screens, the shading coefficient table, the profile angle, and the louver 
construction were used to calculate u(θ, φ) ≡ u(ψ)

u(
 (which is termed  in the 

Handbook).  At the largest profile angle 
Fu

θ, φ) = 0 , and the shading coefficient for this 
profile angle was used to calculate EAC. 

The detailed formulas presented above for the multipliers will enable one to calculate 
when the assumption of a constant IAC, EAC or BAC is violated in particular systems. 

CONCLUSIONS 

The computational methods for calculating the properties of glazing systems containing 
shading from the properties of their components have been developed, but the 
measurement standards and property data bases necessary to apply them have not. 

In order to apply the calculations when there is very limited data, and to simplify them to 
a level appropriate to a handbook treatment, a drastic simplifying assumption was 
necessary.  This assumption is that all shading layers behave as uniform diffusers in both 
transmission and reflection for radiation that in any way encounters the material of the 
layer.   

Many shading layers also contain gaps, through which radiation can penetrate without 
encountering the shading material, leading to the physical picture of a shaded fenestration 
as a mixture of a completely shaded and a completely unshaded one.  This picture is valid 
only when certain multiple reflections are negligibly small. 

Complete formulas for the solar-optical properties of such shaded fenestrations have been 
presented. 

Performance multipliers are defined for simple systems and may be used with appropriate 
caution. 

When both penetration through shading gaps and multiple reflections are significant, 
performance multipliers cannot be used, and the solar-optical property formulas become 
very complicated. 
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Figure 1.  Definition of Unshaded and Shaded Parts of a Shading Layer.  For either 

a louvred or slatted construction (a) or a woven shading layer (b) there is a 
trivial or geometric transmittance resulting from the fact that some incident 
rays encounter no material in the shading layer.  Rays encountering material 
may contribute to the transmittance, but the angular distribution of the 
transmitted radiation will be modified.  Note that since the constructions are 
not azimuthally symmetric, the unshaded fraction u will in general depend 
on both angles characterizing the incident direction. 
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Figure 2.  Contribution of Multiple Interreflections to the Transmittance of a 
Glazing G with an Interior Shading Layer S.  (a) Mathematical Structure of 
the Transmittance.  The symbol below each ray indicates the direction 
(specified by two angles).  At the shading layer, one direction is selected from 
the outgoing distribution.  (Light arrows indicate the existence of other rays.)  
Above each ray is the term resulting from the last encounter with a solid 
material.  The transmittance contribution indicated at the end of the arrow is 
the product of all terms along the preceeding path, integrated over 
intermediate directions.  (b) A venetian blind example illustrates how a ray 
may encounter different shading layer transmittances on initial incidence 
and after interreflection.   
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1

T1, L

Rn ,m
b

R1,L
f

Tn, m

 
Figure 3.  Multilayer glazings considered as systems and subsystems.  A total of L 

layers is assumed.  Glazing layers are numbered sequentially, beginning with 
the side toward the incident radiation (upper dark arrow).  Due to reflections 
among the layers, radiation may be incident on a given layer from either 
direction (light arrows) and interreflected radiation may contribute to the 
absorption in a given layer.  The large dashed box indicates the notation for 
the entire system (transmittance and front reflectance are shown). The 
smaller dashed box indicates the notation for a subsystem consisting of layers 
n through m (unit incidence on the back side of the subsystem, transmittance 
and back reflection are shown). 
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u(θ, φ)
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(2)

 
Figure 4.  Exterior Shading.  Layer numbering and definition of shaded and 

unshaded portions are indicated.  The numbered rays are cases discussed in 
the text.  Ray (1) enters through the unshaded portion and is transmitted 
through the glazing system.  Ray (2) is incident on the shaded portion and is 
transmitted (diffusely) through the shading layer.  Ray (3) is incident on the 
unshaded portion, reflected by the glazing system, and (diffusely, as 
indicated by the light arrows) re-reflected from the back of the shading 
layer. 
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Figure 5.  Layer numbering for between-pane shading.  A shading layer S is 

assumed to be inserted within an L-layer glazing system, dividing the system 
into an outer glazing (layers 1 thru m) and an inner glazing (layers m+1 
through L).  The layers of the new system are renumbered to include the 
shading layer (S-1=m), producing an L+1-layer system with numbering 
shown at the bottom.  For radiation passing through gaps in the shading, the 
optical properties are effectively those of the unshaded glazing, for example, 
transmission as indicated in the figure.  These properties are given the 
superscript “unshaded”, and use the layer numbering of the unshaded 
glazing system, shown at the top of the figure.  For radiation that interacts 
with the shading layer, the relevant properties (e.g., layer absorptivity, as 
indicated) are those of the glazing with the shading layer, and the indices 
refer to the numbering at the bottom of the figure. 
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Appendix A.  Nomenclature 

Symbols 

 A Area 
   A  Absorptance 

 BAC Between-pane (solar) Acceptance Coefficient 
 E  Solar Irradiance 
 EAC Exterior (solar) Acceptance Coefficient  
 G An integer; glazing system number, number of glazing systems, or the 

number specifying a particular glazing or glazing system in a list  
 I  Total radiant energy per unit time 
 IAC Interior (solar) Acceptance Coefficient 
  Number of layers in a system or subsystem L
 N  Inward-flowing fraction of absorbed solar energy 
 R Reflectance 
 S An integer; shading system number, number of shading systems, or the 

number specifying a particular shading layer in a list 
 SHGC  Solar Heat Gain Coefficient 
 T  Transmittance 
  A position vector x
 x, y, z  Coordinates in a right-handed Cartesian coordinate system 

  Incident angle or polar angle in a right-handed 3-D Cartesian 
coordinate system 

θ

  Azimuthal angle in a right-handed 3-D Cartesian coordinate system φ

  Profile angle ψ

  A direction vector, specified by a pair of angles ϑ

 

Subscripts 

 0 Denotes initial value, or before the application of some process or 
qualification; overall (as in area) 

 d Diffuse 
 DN Direct normal; beam 
 e Emerging, or exit 
 G Pertaining to a glazing or glazing system; for area, denotes reduced 

shading area 
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 i Integer denoting a particular layer in a list 
 j Integer denoting a particular layer in a list 
 k Integer denoting a particular layer in a list 
 m Integer denoting a particular layer in a list 
 n Integer denoting a particular layer in a list 
 M A layer designation that may refer to either a single layer or a set of 

layers, e.g., (  i, j)

 N A layer designation that may refer to either a single layer or a set of 
layers, e.g., (  i, j)

  Pertaining to the set of layers from i through j i, j

  Pertaining to the set of layers from i through j (i, j)

 k; ( l, m) Pertaining to the layer k, considered to be part of a (sub)system 
consisting of the layers l through m 

 r Ground-reflected 
 S Pertaining to a shading layer or system; also, an integer label 

identifying a shading layer in a list of layers 
 SYS  Denotes a quantity pertaining to an entire system 
 

Superscripts 

(0) Initial, before the application of some change or action, or the zero-
order approximation 

(1) First; after one application of some change or action; first in a 
succession of approximations 

(2) Second in a series of successive actions or approximations 
 f Front incidence; i.e., on the side toward the ultimate source of 

radiation 
 b Back incidence; i.e., on the side away from the ultimate source of 

radiation 
 H  Hemispherical total, i.e., summed over the outgoing hemisphere 
 shaded A system containing a shading layer 
 unshaded Denotes a glazing system without shading layers 

Operations 

 X D  Average of the quantity X over incident directions uniformly 
distributed over a hemisphere 

 ∆X  Denotes a small change in the quantity X resulting from some action 
or change 
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Appendix B.  Detailed Derivation of Solar-Optical 
Property Formulas For Exterior and Between-Glass 
Shading 

Exterior Shading 

For exterior shading layers the separation into shaded and unshaded areas is not quite 
so clean as for interior shading.  As illustrated in Figure 4, there are three cases that need 
consideration: (1) radiation incident on the openings in (unshaded portion of) the shading 
layer, that is transmitted by the remainder of the glazing system; (2) radiation incident on 
the material (reduced shading area) of the shading layer that is transmitted by the layer; 
and (3) radiation incident on the unshaded portion of the shading layer that is reflected by 
the remainder of the glazing system, re-reflected by the back of the shading layer, and re-
incident on the remainder of the glazing system.  Cases (1) and (2) both occur for interior 
shading and are treated in much the same way for exterior shading.  Case (3), however, is 
new and requires further discussion. 

As indicated in Figure 3 we consider the glazing with shading to form an L+1 layer 
system, but now we denote the shading layer by the index S=0, in order to continue to use 
the expressions involving (1,L) above for the unshaded glazing.  The usual ASHRAE 
treatment of exterior shading, utilizing the full arsenal of profile angles, etc., is 
essentially a calculation of u .  Once this has been determined cases (1) and (2) then 
result in, for example, a system transmittance of 

(θ, φ)

 TS, L
fH(θ)[ ]′ = u(θ, φ)T1, L(θ) + 1 − u(θ, φ)( )

TS
fH T1, L D

1 − RS
bH R1, L

f
D

 (B.1a) 

where the bracket and prime symbol on the left hand side indicate that case (3) has been 
excluded.   

To treat case (3) we shall need to introduce a new quantity, denoted s .  It is an 
analog of the quantity 1

b(θ, φ)
− u(θ, φ) .  A specular quantity, s b(θ, φ) is defined as the 

effective shaded fraction of the shading layer as seen by the rays labeled as (3) in Figure 
4; that is, the shaded fraction of the shading layer as seen from the back for rays that 
have already passed through an unshaded area of the layer.  The value of s b(θ, φ) 
introduced above may be determined by the same kind of geometric analysis used to 
determine u . (θ, φ)

Evaluation of case (3) then proceeds as follows:  The fraction of incident radiation that 
passes through the unshaded portion of the shading layer and is reflected from the glazing 
system is u(θ, φ)R1, L

f (θ), and a fraction s b(θ, φ) of this strikes the material of the shading 
layer from the back side.  (The remainder passes through and is lost.)  Of this, a fraction 

 is reflected by the shading layer and is re-incident on the glazing system (as diffuse 
radiation).  A fraction 
RS

bH

T1, L D
 of this is transmitted and R1, L

f
D
 is reflected.  The reflected 
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radiation now strikes the shading layer material and of this  is reflected and re-
incident on the glazing system.  This is the first term of an infinite interreflection series, 
and collecting terms we can write the case (3) part of the transmittance as 

RS

L D

T1, L
bH R1,

f

S
fH T
RS

bH

L
f

D

1, L
f

D

Ak ;(1
f

RS
bH

bH

 TS, L
fH(θ)[ ]′′ =

u(θ, φ)R1, L
f (θ)s b(θ, φ)RS

bH T1,

1 − RS
bH R1, L

f
D

 (B.1b) 

Combining Equations B.1a and B.1b then gives the expression for the system 
transmittance: 

 

TS, L
fH (θ) = u(θ, φ)T1, L(θ) + 1 − u(θ, φ)( )

TS
fH

D

1 − RS L D

+
u(θ, φ)R1, L

f (θ)s b(θ, φ)RS
bH T1, L D

1 − RS
bH R1, L

f
D

 (B.2a) 

For incident diffuse solar radiation the system transmittance is 

 

TS, L
fH

D
= u(θ, φ)T1, L(θ)

D
+ 1 − u(θ, φ) D( ) T 1, L D

1 − R1, L
f

D

+
u(θ, φ)R1, L

f (θ)sb (θ, φ)
D

RS
bH T1, L D

1 − RS
bH R1, L

f
D

 (B.2b) 

Following a similar argument, absorptance in the shading layer is given by 

 

  

AS;(S,L )
f (θ) = 1 − u(θ, φ)( ) AS

f +
AS

bTS
fH R1,

1 − RS
bH R

 

 
 
 

 

 
 
 

+
u(θ, φ)R1, L

f (θ)sb (θ, φ)AS
b

1 − RS
bH R1,L

f
D

 (B.3a) 

and for the other layers (1 ) the layer absorptances are expressed in terms of the 
layer absorptances of the unshaded system: 

≤ k ≤ L

 

  

Ak ;(S, L )
f (θ) = u(θ, φ)Ak; (1, L)

f (θ) + 1 − u(θ, φ)( )
TS

fH
, L) D

1 − R1, L
f

D

+
u(θ, φ)R1, L

f (θ)s b(θ, φ)RS
bH Ak ;(1, L )

f
D

1 − RS
bH R1, L

f
D

  . (B.3b) 
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Averaging these quantities to produce the corresponding ones applicable for diffuse 
incident solar is straightforward, and is done in the same manner as the transition 
between Equations B.2a and B.2b. 

Using Equation 2 to combine these quantities into a solar heat gain coefficient yields 

 

  

SHGC(S, L )(θ, φ) = u(θ, φ)SHGC(1,L )(θ)

+ 1 − u(θ, φ)( ) TS
fH

1 − RS
bH R1, L

f
D

+
u(θ, φ)R1, L

f (θ)sb(θ, φ)RS
bH

1 − RS
bH R1,L

f
D

 

 
 
 

 

 
 
 

SHGC(1, L ) D

+u(θ, φ) ∆Nk Ak;(1,L )
f (θ)

k = 1

L

∑

+ 1 − u(θ, φ)( ) TS
fH

1 − RS
bH R1, L

f
D

+
u(θ, φ)R1, L

f (θ)sb(θ, φ)RS
bH

1 − RS
bH R1,L

f
D

 

 
 
 

 

 
 
 

∆Nk Ak ;(1,L )
f

D
k =1

L

∑

+NS ⋅ 1 − u(θ, φ)( )AS
f +

1 − u(θ, φ)( )TS
fH R1, L

f
D

1 − RS
bH R1, L

f
D

+
u(θ, φ)R1, L

f (θ)sb (θ, φ)
1 − RS

bH R1,L
f

D

 

 
 

 

 
 AS

b
 

 
 
 

 

 
 
 

 (B.4) 

The presence of the shading layer may modify the inward-flowing fractions for the 
glazing by amounts ∆Nk  from their values without the shading layer, leading to the 
corresponding terms in the equation. 

While this expression is dependent on both θ  and φ , the φ  dependence comes from the 
geometric transmittance through the shading.  This dependence is most significant for a 
venetian blind or louver system, where it is essentially a dependence on the profile angle.  
[The profile angle, ψ , is defined by the equation 

 tan ψ = tan θ sin φ  

where  (incident angle) is the polar and θ φ  the azimuthal angle of a ray pointing to the 
radiation source in a right-handed coordinate system for which the z-axis is perpendicular 
to the fenestration (pointing outward), the x- and y-axes lie in the plane of the 
fenestration, and the x-axis points along the one of the venetian blind or louver slats.]   

Between-Glass Shading 

We next consider a shading layer, S, placed somewhere within an L-layer glazing system.  
This case will require a renumbering of the glazing system layers.  If we include the 
shading layer, S, in the system, then we have an L+1 layer system with the layers 1,…,S-
1 outside the shading layer and the layers S+1,…,L+1 to the inside of the layer. 

In determining the properties of this system we shall consider it to be composed of three 
subsystems, an outer glazing subsystem consisting of the layers 1,..,S-1, the shading 
layer, S, and an inner glazing subsystem consisting of the layers S+1,…,L+1.  In 
addition, we shall need to consider two alternative groupings.  First, we shall consider the 
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combination of an outer subsystem of the layers 1,…,S and an inner subsystem 
containing the layers S+1,…,L+1.  Second, we shall consider the combination of an outer 
subsystem of layers 1,…,S-1 and an inner subsystem of layers S,…,L+1.  In the first case 
the outer subsystem is a glazing with interior shading, while in the second case the inner 
subsystem is a glazing with exterior shading. 

As in the case of exterior shading, we must first consider the geometric fraction u(θ, φ) 
of the incident radiation that passes through the shading layer S without encountering any 
of the shading material.  This situation is similar to the cases discussed above, except that 
(primarily near normal incidence) special provisions must be taken to account for 
specular reflections through the gaps in the shading: 

 Tunshaded = u(θ, φ)T1,L
unshaded (θ) 1 − sb (θ, φ)RS + 1,L +1

f (θ)[ ] (B.5a) 

where, as in the treatment of exterior shading, the quantity s b(θ, φ) represents the 
fraction of the incident radiation which, having passed through gaps in the shading layer 
and been reflected by the inner glazing system, strikes the shading material from the back 
side.  This quantity will be zero at normal incidence.  The above expression does not 
attempt to account for off-normal-incidence cases where radiation passing through a 
particular gap in the shading passes through different gaps on reflection.  Treatment of 
this situation is extremely complicated and lies beyond the scope of this paper. 

Transmission through the shaded glazing system can be calculated from Equation 10a, 
taking the subsystem M to be the outer glazing layers (1,S-1), and N to be the layers 
(S,L+1): 

 T1,L +1
fH (θ)[ ]shaded

=
1 − u(θ, φ)( )T1,S − 1(θ)TS, L + 1

fH (θ)
1 − R1,S − 1

b
D

RS, L + 1
fH (θ)

 (B.5b) 

In this expression, following the discussion of Equation 9, the fact that (S,L+1) is a 
glazing with an exterior shading layer leads to the replacement of the specular quantities 
by either the hemispherical total or diffuse average quantities.  We can obtain the 
transmittance for this subsystem from Equation B.1a: 

 TS, L + 1
fH (θ)[ ]shaded

=
TS

fH TS + 1, L + 1 D

1 − RS
bH RS +1, L +1

f
D

  

The front reflectance for this subsystem (excluding the radiation passing through gaps in 
the shading) is 

 RS, L + 1
fH (θ)[ ]shaded

= RS
fH +

TS
fHTS

bH RS + 1, L + 1
f

D

1 − RS
bH RS + 1, L + 1

f
D

  

When these are substituted into Equation B.5b we obtain 
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 T1, L + 1

fH (θ)[ ]
shaded

=
1 − u (θ , φ)( )T1, S − 1 (θ)TS

fH TS + 1, L + 1 D

1 − R1, S − 1

b

D
RS

fH − RS

bH + R1, S − 1

b

D
RS

fH RS

bH − TS

fHTS

bH( )[ ] RS + 1, L + 1

f

D

 (B.5c) 

In addition, there is the transmittance due to radiation that is transmitted through the 
outer glazing, passes through the gaps in the shading layer, is (specularly) reflected by 
the inner glazing and is (diffusely) re-reflected from the back of the shading layer.  Since 
the portion of the specularly reflected radiation that does not strike the shading layer 
material has already been included in Equation B.5a, we can calculate this case by 
considering that a fraction u(θ, φ)sb (θ, φ)RS +1,L +1

f (θ)  of the incident radiation passes 
through the gaps in the shading, is specularly reflected by the inner glazing system and is 
incident on the back side of the shading layer.  One can consider this to be the back side 
of the system (1,S) consisting of the shading layer and the outer glazing system.  All 
radiation reflected by this system will be diffuse, because it will be either diffusely 
reflected by the shading layer or diffusely transmitted by the shading layer, reflected (any 
number of times) by the outer glazing layer, and again (diffusely) transmitted by the 
shading layer.  We can therefore write 

 T1,L +1
fH (θ)[ ]rerefl

=
u(θ, φ)sb (θ, φ)RS +1,L +1

f (θ)R1,S
bH TS + 1,L +1 D

1 − R1, S
bH RS +1, L + 1

f
D

  

where  it is unnecessary to indicate a hemispherical average over the incidence angle for 
, since this quantity is by assumption independent of incident angle.  In fact,  RbH

1, S

 R1, S
bH = RS

bH +
TS

bH R1,S − 1
b

D
TS

fH

1 − RS
fH R1,S − 1

b
D

 ,  

we have  

 T1 ,L +1
fH (θ)[ ]rerefl

=
u(θ, φ )sb (θ, φ)R

S + 1, L + 1

f (θ ) T
S + 1, L + 1 D

R
S

bH + T
S

bHT
S

fH − R
S

bHR
S

fH( ) R
1, S − 1

b

D
( )

1 − R
S

fH R
1, S − 1

b

D
− R

S

bH + T
S

bHT
S

fH − R
S

bHR
S

fH( ) R
1, S − 1

b

D
( ) R

S + 1, L + 1

f

D

  (B.5d) 

The resulting transmittance is the sum of Equations B.5a, B.5c, and B.5d, 

 TS, L +1
fH (θ) = Tunshaded + TS, L +1

fH (θ)[ ]shaded
+ TS, L +1

fH (θ)[ ]rerefl
 (B.6) 

Absorption in the shading system may be due to specular radiation that strikes the 
shading layer on either the front or back surface, since radiation may pass through the 
gaps in the shading and be specularly reflected by the inside glazing system back onto the 
shading layer.  We consider first radiation incident on the front side the shading layer.  
Prior to any multiple reflections, this incident radiation will be a fraction 

 of the radiation incident on the whole system, taking into account 1 − u(θ, φ)( )T1, S −1(θ)
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that some of the radiation has passed through the gaps in the shading layer.  This 
radiation incident on the shading layer may be absorbed, reflected or transmitted.  The 
reflected radiation, which is diffuse, may be rereflected by the outer glazing system, and 
will give rise to the usual multiple-reflection series enhancement of the radiation incident 
on the shading layer.  However, the radiation transmitted by the shading layer (which is 
also diffuse after transmission) may be reflected by the inner glazing system, 
retransmitted by the shading layer, reflected by the outer glazing system, and again 
incident on the shading layer.  This effect may be included by considering the shading 
layer and the inner glazing system as a unit and using its subsystem reflectance in the 
multiple reflectance series, so that the front side absorption of the shading layer is 

 
  
AFront =

1 − u(θ, φ)( )T1, S −1(θ)AS
f

1 − R1,S − 1
bH

D
RS, L +1

fH
D

 

In writing this expression we have multiple-pass reflection of specular radiation through 
the shading gaps, which eventually strikes the front side of the shading material, 
assuming that the amount of this radiation is small.  Prior to any consideration of multiple 
diffuse reflections between the shading layer and the inner glazing system, radiation can 
be incident on the back side of the shading layer by two mechanisms after first being 
transmitted by the outer glazing: (1) passing through the gaps in the shading and being 
(specularly) reflected by the inner glazing system, and (2) being (diffusely) transmitted 
by the shading layer and subsequently reflected by the inner glazing.  We can write this 
back-incident radiation as the following fraction of the radiation originally incident on 
the system: 

 u(θ, φ)T1,S − 1(θ)RS+ 1, L + 1
b (θ)sb(θ, φ) + 1 − u(θ, φ)( )T1, S

fH (θ) RS +1, L +1
fH

D
 

In this expression use of the subsystem transmittance T1, S
fH (θ)  includes cases where there 

are multiple reflections between the shading layer and the outer glazing system prior to 
transmittance by the shading system.  This radiation may be absorbed by the shading 
system, but it may also be reflected by the shading system and again by the inner glazing 
system prior to absorption.  This may happen any number of times.  Moreover, it might 
also be transmitted by the shading layer, reflected by the outer glazing system, 
transmitted by the shading layer, and again reflected by the inner glazing system prior to 
absorption.  Any number of such double transmissions may occur in combination with 
multiple reflections.  All of these effects are included by considering the outer glazing 
and the shading layer as a unit (1,S) in the multple reflection series, yielding 

 
  
Aback =

u(θ, φ)T1, S −1(θ)RS +1, L + 1
f (θ)sb (θ, φ) + 1 − u(θ, φ)( )T1,S

fH (θ) RS + 1,L +1
fH

D

1 − R1, S
bH

D
RS + 1,L +1

f
D

AS:(1, S
b

) 

where 
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AS;(1,S )

b = AS
b +

TS
bH R1,S − 1

b
D

AS
f

1 − RS
fH R1,S − 1

b
D

 . (B.6a) 

The sum of the front and back absorptions gives the shading layer absorption: 

 

  

A S ; (1, L + 1)
f =

1 − u (θ, φ)( )T1, S − 1 (θ)A S
f

1 − R1, S − 1
bH

D
RS , L + 1

fH

D

+
u(θ , φ)T1, S − 1 (θ)RS + 1, L + 1

f (θ)sb (θ , φ) + 1 − u (θ , φ)( )T1, S
fH (θ) RS + 1, L + 1

fH

D[ ]A S : (1, S )
b

1 − R1, S
bH

D
RS + 1, L + 1

f

D

 (B.7a) 

which can be further expanded by substituting in Equation B.6a. 

In the following we will denote the layer absorption of layer k in the unshaded glazing 
system, with the shading layer left out of the numbering, by   Ak;(1, L )

f , unshaded (θ) .  The shaded 
and unshaded system layer numbering systems are shown in Figure 5.  For layers in the 
outer glazing system (i.e., 1 ≤ k ≤ S-1) 

 

  

Ak;(1, L + 1)
f (θ) = u(θ, φ)Ak;(1,L )

f , unshaded (θ)

+ 1 − u(θ, φ)( ) Ak :(1, S −1)
f (θ) +

T1, S −1(θ)RS
fH Ak:(1,S − 1)

b
D

1 − RS,L +1
f

D
R1, S −1

b
D

 

 
  

 

 
  

 (B.7b) 

and for layers in the inner glazing system (S+1 ≤ k ≤ L+1) 

 

  

Ak;(1, L + 1)
f (θ) = u(θ, φ)Ak;(1,L )

f , unshaded (θ)

+ 1 − u(θ, φ)( )
T1, S

fH (θ) Ak:(S + 1,L +1)
f

D

1 − RS +1,L +1
f

D
R1, S

b
D

 (B.7c) 

When these equations are substituted into Equation 2 we obtain 
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SHGC1, L + 1 (θ) = u (θ, φ) SHGC1, L
unshaded (θ) + ∆N kA k; (1 , L )

f , unshaded (θ)
k = 1

L

∑ 
 
 

 
 
 

+ 1 − u (θ , φ)( ) ×
T1, S − 1 (θ)TS , L + 1

fH (θ)

1 − R1, S − 1
b

D
RS , L + 1

fH (θ)

 
 
 

 
 

+ N k
k = 1

S − 1

∑ A k : (1 , S − 1)
f (θ) +

T1, S − 1 (θ)RS
fH N k

k = 1

S − 1

∑ A k : (1 , S − 1)
b

D

1 − RS , L + 1

f

D
R1, S − 1

b

D

+
T1, S − 1 (θ)N S A S

f

1 − R1, S − 1
bH

D
RS , L + 1

fH

D

+
T1, S

fH (θ) RS + 1, L + 1
fH

D
N S A S : (1, S )

b

1 − R1, S
bH

D
RS + 1, L + 1

f

D

+
T1, S

fH (θ) N k
k = S + 1

L + 1

∑ A k : ( S + 1, L + 1)
f

D

1 − RS + 1, L + 1

f

D
R1, S

b

D

 

 
  

 
 
 

+u (θ , φ)sb (θ , φ) ×
RS + 1, L + 1

f (θ)R1, S
bH TS + 1, L + 1 D

1 − R1, S
bH RS + 1, L + 1

f

D

 
 
 

−T1, L
unshaded (θ)R1, S − 1

b (θ)RS + 1, L + 1
f (θ) +

T1, S − 1 (θ)RS + 1, L + 1

f (θ)A S : (1, S )

b

1 − R1, S
bH

D
RS + 1, L + 1

f

D

 
 
 

 (B.8) 

The second term in the first set of curly brackets in this equation occurs because the 
presence of the shading layer modifies the inward-flowing fraction of layer k by an 
amount k .  ∆N
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Appendix C.  Complete Expression for BAC 
The equation for BAC is obtained by manipulating Equation B.8 to put it into the form of 
Equation 22, after which the terms corresponding to the quantity BAC in Equation 22 can 
be identified.  When this is done one obtains the expression 

  

BAC =
 

 
 

 
 

TS,L +1
fH (θ)

1 − R1,S − 1
b

D
RS, L + 1

fH (θ)
+ N S

AS
f

1 − R1,S − 1
bH

D
RS,L +1

fH
D

+
RS

fH Nk
k= 1

S −1

∑ Ak:(1, S −1)
b

D

1 − RS, L + 1
f

D
R1,S − 1

b
D

+
TS

fH Nk
k = S + 1

L +1

∑ Ak:(S + 1,L +1)
f

D

1 − RS +1, L + 1
f

D
R1,S

b
D( )1 − R1, S −1

b RS
fH( )

+ NS

RS +1,L +1
fH

D
TS

fH AS:(1,S )
b

1 − R1,S
bH RS + 1, L + 1

f
D( )1 − R1,S − 1

b RS
fH( )

+
u(θ, φ)sb (θ, φ)
1 − u(θ, φ)( )

 

 
 NS

RS +1,L +1
f (θ)AS:(1,S )

b

1 − R1, S
bH RS + 1,L +1

f
D( )

+
RS +1, L + 1

f (θ)R1,S
bH TS +1,L +1 D

1 − R1, S
bH RS + 1,L +1

f
D( ) −

RS +1,L +1
f (θ)TS + 1, L + 1(θ)

1 − RS +1,L +1
f (θ)R1, S −1

b (θ)( )
 

 
 

 

 
 

 
 

−
Nk

0 Ak;(1, L )
f , unshaded

k =1

L

∑
SHGC1,S − 1(θ)

×
 

 
 

 
 

N S
AS

f

1 − R1, S −1
bH

D
RS,L +1

fH
D

+
RS

fH Nk
k =1

S −1

∑ Ak:(1, S −1)
b

D

1 − RS, L + 1
f

D
R1,S − 1

b
D

+
TS

fH Nk
k = S + 1

L +1

∑ Ak:(S + 1,L +1)
f

D

1 − RS +1, L + 1
f

D
R1,S

b
D( )1 − R1, S −1

b RS
fH( ) + NS

RS +1,L +1
fH

D
TS

fH AS:(1,S )
b

1 − R1,S
bH RS + 1, L + 1

f
D( )1 − R1,S − 1

b RS
fH( )

+
u(θ, φ)sb (θ, φ)
1 − u(θ, φ)( )

 

 
 NS

RS +1,L +1
f (θ)AS:(1,S )

b

1 − R1, S
bH RS + 1,L +1

f
D( ) +

RS + 1,L +1
f (θ)R1, S

bH TS +1, L + 1 D

1 − R1,S
bH RS +1, L + 1

f
D( )

−
RS + 1,L +1

f (θ)TS +1, L + 1(θ)
1 − RS + 1,L +1

f (θ)R1, S −1
b (θ)( )

 

 
 

 

 
 

 
 

+
1

SHGC1, S −1(θ)

 

 
 

 
 

1 − R1,S − 1
b

D
RS, L + 1

fH (θ) − TS,L +1
fH (θ)

1 − R1,S − 1
b

D
RS, L + 1

fH (θ)

 

 
 
 

 

 
 
 

Nk
k = 1

S − 1

∑ Ak :(1, S −1)
f (θ)

+
TS, L + 1

fH (θ) ∆Nk
k = 1

S − 1

∑ Ak:(1,S − 1)
f (θ)

1 − R1, S −1
b

D
RS,L +1

fH (θ)
+

u(θ, φ)
1 − u(θ, φ)( ) ∆Nk

k =1

L

∑ Ak ;(1, L )
f ,unshaded (θ)

 

 
 

 
 
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