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A General Model for the Calculation of Daylighting

in Interior Spaces
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An analytical model and a computer code
have been developed which calculate the
amount of daylight illumination on a working
surface inside an arbitrary room, for overcast
as well as for clear sky conditions. The room
may have windows as well as skylights, with
clear glass, diffusing glass, or glass fitted with
thin shading devices (such as sheer curtains or
shades), as well as overhangs. The shape of the
room is not limited to simple, rectangular
enclosures, allowing the treatment of L-shaped
rooms, A-frame buildings, etc.

The illumination generally consists of three
parts: direct sky illumination, illumination
from external reflectors, and illumination from
internal reflectors. First, the luminances ema-
nating from surrounding obstructions are de-
termined. Next, illumingtion traveling through
the windows directly to inside walls and
working surface is calculated. Finally, inter-
reflection inside the room is taken into
account to establish the luminance distribu-
tions of inside walls. After determination of
all inside and outside luminances, it is a simple
matter to calculate illumination and daylight
factor for the working surface.

INTRODUCTION

When designing a room one of the consider-
ations taken into account is the amount of
daylight illumination that enters the room. To
maximize human efficiency and comfort it is
often desirable to optimize daylight distribu-
tion within the room on a specified working
surface. Simultaneously, it is desirable to
optimize window surface areas and orientation
to minimize heating and cooling loads in the
~ light of energy conservation.

Daylight illumination falling onto a work-
ing surface consists of three components: (i)
light traveling directly from the sky through
windows to the working surface, (ii) light
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traveling directly from outside reflectors
(such as opposing buildings, ground, etc.)
through the windows to the working surface,
and (iii) light traveling to the working surface
after one or more reflections from inside
surfaces (walls, ceiling, etc.).

Predictions of daylight illumination levels
in a room are, by necessity, subject to a com-
promise between accuracy and numerical
complexity. If only crude knowledge of
general illumination levels is needed, simple
models, such as the one by Bryan [1], which
do not require use of a digital computer, may
be sufficient. For more accurate evaluations
the code developed by DiLaura et al. [2 - 5]
represents the state of the art, at the expense
of substantial computer time requirements.
Nevertheless, even the sophisticated model by
DiLaura et al. is subject to a number of
confining restrictions: (i) only rectangular
rooms with horizontal and vertical rectangular
surfaces can be modeled; (ii) the room may
not have any internal obstructions; (iii) in-
ternal reflections as well as window overhangs
are modeled in a very approximate fashion.
The above shortcomings are dictated by the
need to keep computational time within
reasonable bounds. It should be kept in mind
here that DiLaura’s is a general lighting code,
of which daylighting is only one element.

It is the purpose of the present paper to
develop a general and relatively simple yet
accurate and efficient model specifically for
the prediction of daylight illumination. In
particular, the restrictions mentioned above
will be eliminated from the present analysis.

SKY LUMINANCE VARIATION

To determine the contributions of direct
sky illumination, illumination from external
reflections, and from internal reflections, the

luminance distribution over the sky must be
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known for all directions. The luminance, L,is
defined as the light flux traveling into a given
direction per unit area normal to the rays and
per unit solid angle. The sky luminance
distribution is dependent upon weather
conditions, geographical location, the time of
day, and the time of year, and is presumed to
be known. The distribution functions used for
the sample calculations in the present paper
are the ones proposed by CIE (Commission
Internationale de ’Eclairage) for overcast and
clear days [6]. However, the model presented
here may be used with any given sky lumi-
nance distribution.

GEOMETRIC MODELLING OF INSIDE AND OUT-
SIDE SURFACES
The inside of the room is assumed to

consist of N plane surfaces of trapezoidal
ghape (see Fig. 1). This is considered to be
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Fig. 1. Geometry of allowable surfaces.

adequately general to model any present room
design of practical importance. These N sur-
faces comprise N, clear windows, N,. clear
windows. with sheer curtains, Ny diffusing
windows, and N, opaque walls, which reflect
light diffusely. Clear windows are understood
to be surfaces that partially transmit light
without directional scattering. Diffuse win-
dows, on the other hand, are assumed to
scatter transmitted light equally into all
directions (milky-texture glass, windows with
shades, etc.). Sheer-curtain windows are
assumed to partially transmit light directly,
and to partially diffuse the light (dirty win-
dows, fly screens, sheer-curtained windows,
etc.). Each of the opaque surfaces may have
other surfaces as cut-outs, e.g., windows, large
dark pictures, etc. ‘

Location and dimensions of each surface
are described by a local coordinate system

which is then related to an overall stationary
coordinate system. The local coordinate
system (see Fig. 1) has its origin located so
that the x'-axis runs along one of the two
parallel sides of the trapezoid. The 2'-axis is
chosen so that it points perpendicularly into

the room.

The overall stationary coordinate system is
chosen in the following manner:

(i) arbitrary fixed origin,

(ii) x-axis pointing from origin towards
south,

(iii) y-axis pointing from origin towards
east, ‘

(iv) z-axis pointing from origin vertically
into the sky (zenith).

To totally describe a surface “i” the local
coordinate system must be related to the
overall coordinate system. To accomplish this
the following data are required:

(i) location (Xoi, Yo, Zoi) of the local
coordinate system’s origin with respect to the
overall origin;

(i) 8x; and B,,, that is, the polar angles
formed by the x'- and y'-axes with respect to
the absolute z-axis;

(iii) ¥4, and ¥, that is, the azimuth angles
of the x'- and y'-axes in the x-y plane (the
angles between the x-axis and the projection
of the x'- or y'-axis);

(iV)X“, .Xz‘, Xﬂ and }’(, that iS, charac-
teristic dimensions of surface “i” as depicted
in Fig. 1;

(v) if the surface is a window, its thickness,
that is, the width of the hole through which
light can penetrate (d;).

The overall coordinates of any point (x’, ¥')
on a surface A; can then be described by the
equations

X = Xoy + lax' + 12",

yi = Yo + 1z + 1Y, (1)
2 = Zo +lax' +1py,

which are subject to the restrictions,

X3 , ' X=Xy,
—y €' Xy ————Y, 2
Y, y 1 Y, y (

0<y'<Y,.

The values I!,, in eqn. (1) are the directior
cosines between the m-axis of the overal
system and the n-axis of the local system



They are computed from the following

equations:

liy =1-1i; =sin B,; cos Y,

I8, =7+ i; = sin B,; sin Yy,

liy =k - i; = cos B,

B, =1-j,=sinp,; cos ¢y;.

I3 =j-Jj; =sin Byisin Yy,

lip =k -j;=cosBy,

li;=10-Fk; =sin B sin Y, cosB,; — (3)
— cos B,; sin B,; sin ¥,

iy =7+ k; = cos B, sin B,; cos ¥,; —
— sin f,; COS ¥ ; COS By,

lis =k - k; =sin B, sin fy; sin(¥yi = Vui)-

Equations (1) and (2) may be rewritten in
nondimensional coordinates

y' x'—Xym ‘
n= ks - (4)
Y; X1t — (X1 — X35 + Xai)m
such that

x; = Xop + 1 [Xas — Xy — Xa + Xoi)m]E +
+ (1 X + 1Yo,
¥i = Yo + 15 [ Xy — (X1y — Xa; + X ] +
+ (15 Xo; + 15 Y0,
zi=Zo; + 15 [X1; — (Xy; — Xai + X1 +
+ (15, X +15Yin, (5)
restricted by

0<n<1, O0<t<1. (6)

An “enclosure” is assigned to each window
in the room (unless the window is a skylight
which sees only the sky). Windows that are
cutouts located in the same wall may view the
same enclosure. All surfaces in the outside
enclosure are assumed to be plane and of
trapezoidal shape as is the case for inside
surfaces. For outside surfaces, no cutouts are
allowed (for example, a building facade with
windows is assigned an overall reflectivity),
and all surfaces are either diffuse and opaque
or part of the sky. The surfaces in the enclo-
sure are described in the same manner as those
inside the room, that is, each surface is assigned
a local coordinate system and that system is
then related to the overall coordinate system.

[N

Thus, Fig. 1 and egns. (1) - (6) hold for both
inside and outside surfaces.

DETERMINATION OF THE LUMINANCE DISTRI-
BUTION ON EXTERNAL SURFACES

The luminance of all surfaces in the outside
enclosures must be determined in order to
calculate the amount of illumination reflected
into the room from the surroundings. For
simplicity it is assumed that each outside
surface has a constant (average) luminance
over its entire surface area. A light flux
balance on each opaque surface yields (fol-
lowing thermal radiation procedures, e.g.,
ref. 7)

Nwp 5”'
p) ['— —FI—J]LJD =
j=1 | Pip

LY oyt ﬁ—gE, cosBy, i=1,Ny, (7)
T

where, N,, = number of opaque walls in
enclosure p, L;, = unknown luminance of
surface j, pj, = reflectivity of surface j, F;_; =
light exchange factor from surface ‘i’ to *j”’,

ooy = light exchange factor from surface i
to sky, L, = sky luminance at zenith, E, =
direct solar illumination perpendicular to the
rays, f;p = fraction of surface A;, receiving
direct sunshine, §,; = angle between surface
normal k,, and unit vector #, pointing toward
the sun (cos By = kyp* f,), 8;; = Kronecker
delta.

Equations (7) form a system of N, equa-
tions in Ny, unknown luminances, L;,. This
set of simultaneous equations may be solved
for each outside enclosure by matrix inversion.
Once the luminances, L;,, are known, their
contribution to illumination in the room,
either by direct travel or after internal reflec-
tions, may be evaluated.

The necessary light exchange factors, F;_;
and ¥ _,y, may be evaluated by applying
radiative transfer theory. The amount of light
flux from surface *j’* onto surface “i""is [7]:

Ey= [ [Liw)cospydw day, (8)
A; Q5

where L; is the luminance emanating from
surface “j” and B;; is the angle between the
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surface normal to A; and the direction under
consideration, while £, is the solid angle with
which surface A; is seen from a point on A;. If
L; = const, i.e., the luminance does not vary
over surface A;, eqn. (8) reduces to [7]

1
By = LiFijAi = AL — [ [sda; - da;) x
A Aj

x 5P COShit 4y g4, (9)
mSy;

where F;_; is the standard configuration
factor between diffuse surfaces if there are no
visual obstructions. In eqn. (9) § is an on—off
function, i.e., 8 = 1 for pairs of points on 4;
and A; that see each other, and § = 0 for pairs
that do not (due to visual obstructions), while
S;; is the distance between the pairs.

If Ly # const, e.g., variable luminance
across the sky (4; is the sky), the L,;, cannot
be separated from the integral, but one may
write
Ei gy = L7 aAi

4 ) cos B; gy dw dA;,
(10)

where L, is the zenith luminance.

The exchange factors can be evaluated in a:
number of ways. If the surface luminance is
constant and if there are no visual obstruc-
tions, eqn. (9) is readily evaluated by double
area integration or, after transformation, by
contour integration. This method, however,
becomes impractical for the more general
cases,

For the relatively few and large outside
surfaces the Monte Carlo method [7] is used
to determine the F,.; and % .,,, which is
considered most efficient for these cases. In
this statistical numerical method a large
number of light bundles is traced and their
behavior averaged. Note in this context that
egn. (10) is also an expression for the light
flux traveling from surface “‘i”” into the sky, if
A; had a directional distribution of luminance
identical to the sky’s. Thus, for the evaluation
of all exchange factors, locations and direc-
tions of light emission on A; are chosen by
picking four random numbers R, to R, (0 <
R; < 1), resulting in [7]

11'_ - Xu_'\/Xuz—[X112"(X3i‘X21)2]Rl )
Yt Xu—‘(Xat"th) '
X # X3 — Xy (11)
X1 = X3 — X,

, yi yi
11=X21?I + Xu"(Xu-Xat*Xzi)'é‘ R,,
f f

(12)
B =sin"' VRj, (13)
6 =2nR, . (14)

The above information is used to form a
unit vector, F, for the direction of emission,
whose components in the overall coordinate
system are

Fei=n; =1l sinBcosd+1l sinfsing +
+14 cos B
Frj=ny =1}, 8inp cosd + Ii, sin § sin 6 +
+ 1%, cos 8
+k=n3=1i3sinp cos 8 + i sin § sin 9 +
+ 33 cos B. (15)

1

Once the point of emission and the direction
vector have been determined, the surface
upon which the light bundle impinges must be
found. If F; represents the vector to the point
of emission on surface “i”, and 7 represents
the vector to a possible point of intersection
on surface “j”, the local coordinates of this
intersection point can be computed from:

G=F) - _ GGy _ G—F) -k _

Fei Felj Pk ’
(16)
where d is the distance traveled.
Equation (16) yields
x;= (xi —Xoptan)lf; + (v, — of ¥ ang)lhy +

+(2y — 2, + ang)ly,
¥i = (2 —Xop +any)ls + (y; — Yoy +any)l, +
+ (21— Z,; + any)ly,, (17)
where
(xi — Xo )3 + (vi — Y, )3 + (2 —Zo)ls
nylis + nalhs + naliy '

(18)



The restriction by egn. (2) is now applied to
egns. (17) to see if (xj, y;) is actually on
surface ‘4’’. All surfaces are checked in this
manner until the correct intersection (with
minimum d) is found. More than one inter-
section may be possible as some surfaces may
be partially obstructed by other surfaces
(overhangs, balconies, etc.).

A tally is kept of the percentage of light
bundles that hits each surface, which is the
exchange factor. If the intersecting surface is
the sky, it can be shown that the exchange
factor defined in eqn. (18) is determined by
multiplying each bundle by the weight-factor
Ly /L,.

DETERMINATION OF THE LUMINANCE DISTRI-
BUTION ON INTERNAL SURFACES

Inside the room luminances may not only
vary significantly across the surfaces, but this
variation may also profoundly affect the
illumination on the working surface. It is,
therefore, necessary to break up inside sur-
faces into a number of subsurfaces or nodes.
A light balance performed on subsurface “k”
on surface “i” yields (again using radiative
transfer analogy):

N Nj
Lix=p; 2 ZJ Fix~juLji *+ piLep + Lai,
i=11=1
i=1,N
o
k=1,N,'

where L., is the directly transmitted lumi-
nance penetrating through a clear or sheer-
curtained window (as seen by node “k”’), and
L,; is the contribution of diffusing or sheer-
curtained windows to their own luminance.
Thus incoming light is ‘“‘assigned’ to the sur-
face where the first diffuse reflection or dif-
fuse re-orientation after transmission occurs,
i.e.,, some inside surface for light coming
through clear windows, and the window itself
if it is diffusing. Windows with simple shading
devices, such as sheer curtains, are assumed to
transmit a fraction, a«, like a clear window,
while the rest, 1 — a, is diffused. This model-
ling allows the usage of standard radiation
configuration factors, Fy, .5 [7].

73

It follows that

Ne+Now Nj
Lew= 2 o 3 FipepTin—pLp +
=1 =5

)
+ ;“r,-,.-.E. COs By - (20)

In this equation L, is the luminance of that
outside surface (or the sky), from which a
light beam can travel along a straight line
through node “ji” to the node under con-
sideration, “ik’. The transmissivity of the
window in this direction is denoted by 7 _ ;.
The last term specifies whether direct sunshine
falls on the inside node (5, = 1) ornot (5, = 0).
Also

Ly=(1—gq) [ [ Ly()ri(w)cos g dw +

2n

b
+ —71;_,F, cos 8,1,
T

N.<i<N.+N,+N; (21)

where the integration is over the entire out-
side hemisphere from which light can impinge
on the diffusing window.

For the numerous small subsurfaces inside
the room the exchange factors are readily
determined from eqn. (9) as

1
Fik-y = - f f's(dAik - dA;;) X
Tk Aix Aj

cos f;; cos f;;

X 2

7rS,-,-
If the nodes are sufficiently small and suffi-
ciently far apart, say A,4;/Si* < 1, the
integrand in egn. (22) may be replaced by a
constant average value evaluated between

node centers, resulting in

dA4;; dAd;; . (22)

cos f;; cos §j;

Fipep=|8(An—A An
k—j1 (Air j1) 1rS,-,-2 e, il
AuA,

—r <1 (23)
Sy

For the few nodes close to each other (touch-
ing comers) eqn. (22) is readily evaluated by
numerical quadrature. ’
Equation (19) again forms a system of
simultaneous equations. However, depending
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on the number of nodes, this sytem may have
many hundreds of equations, making matrix
inversion impractical. As the major contribu-
tion to L;, is generally due to direct illumina-
tion (L. and Lq;), €qn. (19) is readily solved
by successive approximations (one or two
iterations usuaily suffice).

DIRECT SUNSHINE DURING CLEAR SKY CON-
DITIONS

When the sun is not occluded by clouds,
direct sunshine falls on some of the opaque
surfaces of the outer enclosures and, possibly,
directly into the room through windows. For
each outside surface the fraction of it, f;, that
receives direct sunlight must be calculated.
This value is then used in eqn. (7). Similarly,
for each inside node it must be determined
whether it receives sunshine (6. = 1) or not
(6, = 0), to be used in eqgns. (20) and (21).
Finally, if an outside surface, A;, can be seen
from the working surface inside the room so
that direct reflection from A, is possible, then
unshaded areas upon A; must be identified so
that their contribution to the working surface
illumination can be determined.

If unobstructed sunlight shines on the
surface A;, the unshaded fraction of A; can be
evaluated from:

1
fi= — Jorda, (24)
i
where
§; = 0 for shaded regions and, 25)
; =1 for unshaded regions.
Equation (24) may be written as
A Xp ()
fi= o [ [ dteydsdy (26)
Lo x309)
where, referring to Fig. 1,
Xi(yi) = X2:(yi/ Yi)s
(27)

X.(yi) = X1 — (X1 — Xa )il Yi.

Equation (26) may be written in terms of the
nondimensional parameters n and £, defined
by eqns. (5), as

9 11
= 5 . X —_—
fi X+ Xar —X21) E[B{ (n, X
— (Xy; — X3 + Xaim] dn dE. (28)

The evaluation on this integral may be
achieved by numerical quadrature.

To determine whether a point (n. &) is
shaded or unshaded, a light beam is traced
from that point into the direction of the sun,
f,, by applying eqns. (15) - (18).

The determination of the & function for
inside nodes is similar: a beam from that node
traveling towards the sun is checked whether
it passes through a window without hitting
any inside or outside obstructions.

WORKING SURFACE ILLUMINATION AND DAY-
LIGHT FACTOR

By placing one or more “imaginary working
surfaces” into the room, illumination at
points inside the room where no surface is
located can be calculated.

Each working surface is divided into a grid
of nodal points. The illumination at any
working surface node “jk”, in the room can
be computed similar to eqn. (19) from

N N;
Ew=13 ¥ LypFix—j + TLeix- (29)
ji=1i=1
where L. is again calculated from eqn. (20).
The daylight factor is calculated from

DF =E”,/EH, (30)

where Ey is the illumination onto an un-
obstructed (outside) horizontal surface. In the
generally accepted definition of the daylight
factor, direct sunshine is specifically excluded
from E;, as well as Ey. Note that this defini-
tion may result in DF > 1 (due to reflection
from surfaces receiving direct sunshine).
Recall that for all outside surfaces the
contribution of direct sunshine is averaged
over the whole surface when computing the
surfaces’ overall luminance. However, to
accurately compute the contribution of out-
side opaque surfaces to the illumination of
the working surface nodal points, unshaded
areas of outside surfaces must be differentiated
from shaded areas. This is accomplished in
the following manner: when the fraction of



direct sunshine on an outside surface is
computed by numerical integration, the nodal
points on the surface are checked to see if
they receive direct sunshine or not, and this
fact is then stored. Then, when computing the
outside luminance, L,, in egn. (20), the
location intersected on the outside wall by
the light beam is checked to see if it is in an
unshaded region or not. For an intersection in
an unshaded region, the luminance of outside
surface *“i” is evaluated as

Le=L; +(1 — ;)2 E, cos By, (31a)
k14
and for a shaded region as
Le=Li— ;2 B, cos b, (31b)
)

where f; is the fraction of the outside surface
that sees direct sunshine, p; is the reflectivity
of the outside surface, L; is the average
luminance on the outside surface and E; is the
direct sky illumination.

ILLUSTRATIVE EXAMPLES

To demonstrate the power of the present
model, two different room designs will be
considered. In the first example daylighting in
an L-shaped room is considered, i.e., a room
where some walls are partially obstructed

TABLE 1
Design data for sample rooms
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Fig. 2. Floor plan of L-shaped room.

from one another (see Fig. 2). In the second
example a oneroom A-frame space with
window overhangs is treated, i.e., a room with
non-rectangular surfaces. Design data for the
two rooms and their surroundings are sum-
marized in Table 1.

The results for the daylight illumination
upon a 2.5 ft. (0.76 m) high working surface
in the L-shaped room are summarized in
Table 2 for an overcast day, and in Table 3
for a clear day. As the sky luminance for a
CIE overcast sky is symmetric, illumination
inside the room would be symmetric as well,
if there were a thin, opaque separation wall in

L-shaped room

A-frame room

Window number and size

Floor height above ground
Window transmissivities
(perpendicular to windows)
Reflectivities: floor
ceiling
sidewalls
Room height
Window wall/overhang width
Object building and
surroundings

Two 5ft x 5t (1.5 m X 1.5 m) windows in
south wall, centers 5 ft (1.5 m) above
floor, 1 window with sheer curtain
(@a=0.8)

30 £t (9.15m)

85%

20%

70%

60%

10 ft (3.05 m)

1 ft (0.30 m)

Room in center of 60 ft X 30 ft x 50 ft
(18.3m x 9.2 m x 15.2 m) building.
Windows in 60 ft (18.3 m) E-W wall
exposed to the South; identical opposing
building to the North, with 50 ft (15.2 m)
between buildings

2 triangular windows 15 ft
(4.57 m) (bage) x 15 ft (1.57 m)
(height) filling entire east and
west walls

0 ft (0 m)

85%

20%

30%
15 ft (4.57 m)

'0,1o0r3ft(0,0.30 or 0.91 m)

No outside obstructions
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TABLE 2

Working surface illumination in L-shaped room on an overcast day (in foot-candles = 10.76 lux)
Illumination on outside horizontal surface: 1400 fc (15064 lux).

x y: 875 6.25 3.75 1.25 —1.25 —3.75 —6.25 —8.75
—1.25 51.3 205.6 205.8 54.1 54.0 200.1 200.9 52.1
—3.75 61.9 98.7 101.2 70.3 69.3 98.9 97.5 63.4
—6.25 36.4 43.5 45.7 45.9 48.3 50.7 49.4 41.8
—8.75 23.1 26.3 28.1 30.0 36.5 38.1 36.3 31.6

—11.25 19.3 21.9 23.1 21.6

—13.75 145 15.7 15.7 13.0

—16.25 12.2 12.9 12.2 10.3

—18.75 10.7 11.0 9.8 8.5

TABLE 3

Working surface illumination in L-shaped room on a clear day (in foot-candles = 10.76 lux)
Sun polar angle: 45° off zenith; sun azimuth angle: 30° off South towards East.
Hlumination on outside horizontal surface: 6235 fc (67089 lux) direct sun, 1493 fc (16065 lux)

sky component.

x y: 8.75 6.25 3.75 1.25 —1.26 —3.75 —6.25 —8.75
-1.25 177.3 679.2 5837.2 2724 279.4 934.4 5060.7 315.0
-3.75 216.4 358.3 432.3 366.4 334.3 478.7 524.5 405.1
—6.25 175.7 219.9 247.3 265.7 286.3 315.4 320.8 289.1
—8.75 132.3 147.3 163.8 1889 238.8 248.7 2443 224.5

-11.25 98.8 108.2 1179 1161

—13.75 74.8 81.9 82.1 69.6

—16.25 62.1 66.0 62.8 53.3

—18.75 53.6 55.8 50.0 42.5

the room in the x-z plane (thin line
Fig. 2). Thus comparison of the first (y
8.75) column with the fourth (y = 1.25), the
second with the third, etc., shows the in-
fluence of the L-shape of the room with its
two windows. For the front half of the room,
illumination at y = 1.25 is higher than at
y 8.75 because of its proximity to the
second window. In the rear half of the room,
however, the opposite is true as there is no
direct illumination from the second window
at y 1.25. Comparison of the left-front
third of the room with the right-front third
shows the influence of the partly diffusing
nature of the second window: close to the
partly diffuse window the illumination is
roughly 20% lower than close to the clear
window (a = 0.8!). However, farther away
from the windows, say along x —8.75,
illumination is higher in the right part of the
room due to the diffusing nature of its window.
Similar trends can be observed from the data
for a clear day shown in Table 3. Note that

in

only two of the shown nodes receive direct
sunshine, viz., x = —1.25, y = —3.75 and
y = —6.25. This is due to the visual obstruc-
tion caused by the thickness of the window
wall. For a zero wall thickness four nodes for
each window would receive direct sun. To
permit better visualization of the illumination
levels in a room, a contour plotting routine
has been added to the computer program
(Fig. 3). Contour levels can be expressed in
footcandles (lux) or in units of daylight
factor. The plot shows the room outline,
window location, and identifies the location
of direct sunlight on the workplace.

Results for the A-frame room are sum-
marized in Table 4 (overcast day) and Table 5
(clear day). For the overcast day, cabin
geometry as well as sky luminance are sym-
metric, resulting in double symmetric illumina-
tion on the working surface (around x = 7.5
and around y = —12.5). In some cases the
symmetry does not carry all the way to the
last digit due to the iterative nature of the
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Fig. 3. Sample of graphical display of results for L-shaped room.

TABLE 4

Overcast-day daylight illumination on a working surface in A-frame cabin (in fe = 10.76 lux)
(Olumination on horizontal outside surface = 1500 fc = 16140 lux.)

x y:—1.25 —3.75 —6.25 —B.75 —11.25 —13.75 —16.25 —18.76 —-21.25 —23.75
12.5
(0)* 2629 157.2 108.0 816 683 68.3 81.6 108.0 157.2 263.0
(1) 228.0 138.6 93.4 70.0 591 59.1 70.0 93.4 138.7 228.0
(3) 92.5 89.6 67.2 51.2 423 423 51.2 67.2 89.7 92.6
10.0
0) 373.7 238.4 145.7 100.0 80.2 80.2 100.0 145.7 238.5 373.8
(1) 311.0 184.8 115.9 82,5 673 67.3 82.5 115.9 184.8 311.1
(3) 2209 120.2 81.4 56.3 456 45.6 56.3 81.4 120.3 221.0
7.5
(0) 385.9 266.7 161.2 106.8 846 84.6 106.8 161.3 266.8 386.0
(1) 336.5 208.5 128.3 846 684 68.4 84.6 128.3 208.5 336.6
(3) 1909 1384 84.7 59.5 47.1 47.1 59.6 84.7 138.4 191.0
5.0
(0) 373.7 238.4 145.7 100.0 80.2 80.2 100.0 145.7 238.5 373.8
(1) 311.0 1848 1159 82,5 67.3 67.3 82.5 115.9 184.8 311.1
(3) 2209 120.2 81.4 56.3 45.6 45.6 56.3 814 120.3 221.0
2,5
0) 262.9 157.2 108.0 816 684 68.4 81.7 108.0 157.2 263.0
(1) 228.0 1386 93.4 70.0 59.1 59.1 70.0 93.4 138.7 228.1
(3) 92.5 89.6 67.2 51.2 423 42.3 51.2 67.2 89.7 92.6

*(0) = 0 ft window overhang, 7 # const.; (1) =1 ft, T # const.; (3) = 3 ft, T = const.

solution. The results are shown for three
different constructions: (0) no window over-
hangs, (1) 1 ft (0.30 m) wide, and (3) 3 ft
(0.91 m) wide roof overhangs on both sides of
the room. The results clearly demonstrate the
strong influence that window overhangs or

even the window wall thickness can have on
daylighting. Along the centerline of the room
the light level is essentially halved by the
addition of 3 ft (0.9 m) overhangs. The effect
of overhangs as shown here is slightly exag-
gerated, as it was assumed that the undersides
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TABLE 5

Clear-day daylight illumination on working surface in A-frame cabin (in fe = 10.76 lux)

(Mlumination on horizontal outside surface = 6106 fc (65701 lux) direct component, = 894 fc (9619 lux) sky

component)
x y:—1.25 —3.75 —6.25 —8.75 —11.25 —13.75 —16.25 —18.76 —21.25 —23.75
12.5
(0.)* 253.6 184.3 1364 1118 92.1 85.1 86.6 96.2 122.8 141.8
(0) 220.0 165.6 126.1 1048 87.3 81.1 82.5 90.5 111.0 118.9
(1) 203.1 153.7 115.3 95.1 78.8 729 73.7 80.9 101.4 107.2
(3) 68.1 91.0 76.2 64.4 54.6 52.2 54.9 60.1 69.0 55.0
10.0
(0,) 5670.2 305.1 204.5 1536 1215 109.1 110.9 125.6 161.6 204.0
(0) 4760.1 279.4 190.5 1443 115.2 103.9 105.5 118.5 148.1 166.8
(1) 341.2 224.8 162.6 1279 102.6 92.2 92.5 101.8 124.1 140.5
(3) 199.3 134.1 102.8 80.6 66.5 62.2 64.5 73.0 86.6 94.8
7.5
(0.) 5735.3 409.3 263.1 181.2 138.0 120.1 120.6 138.0 175.7 219.7
(0) 4802.1 372.8 245.8 1710 1311 114.5 114.8 130.3 161.7 174.6
(1) 4761.0 3094 208.2 145.0 113.2 99.1 98.0 111.1 136.2 151.1
(3) 218.0 175.8 121.9 92.3 74.2 68.4 70.0 77.6 94.5 87.6
5.0
(0.) 5810.0 5689.5 2852 1908 138.2 118.0 116.3 131.0 171.5 219.0
(0) 4862.9 4801.9 266.3 180.8 132.0 113.0 1111 123.8 156.6 174.1
(1) 4825.0 47428 2258 1555 115.0 98.5 96.5 105.6 130.2 148.8
(3) 4688.4 231.3 135.0 98.0 74.6 67.2 67.4 75.6 89.8 101.9
2.5
(0,) 58140 5706.7 5457.0 1704 121.0 1015 97.1 105.8 138.1 172.7
(0) 4869.6 4805.5 4603.3 162.0 116.3 97.8 93.1 99.9 123.9 138.0
(1) 4837.8 4777.0 216.8 1410 102.0 86.1 81.8 87.8 111.0 122.0
(3) 4689.4 309.3 149.3 96.8 70.5 62.0 60.4 65.0 74.6 65.3

*(0.) = 0 ft window overhang, T = const.; (0) = O ft overhang, T # const.; (1) =1 ft, T = const.; (3) = 3 ft,

T # const.

of the overhangs are perfectly black (i.e., have
zero reflectivities). In reality there may be
some light reflection from the overhangs into
the room.

Again, the results for clear conditions
exhibit the same trends. In Table 5 a fourth
case, (0.), is included (no overhangs, with
directionally independent window transmis-
sivities, r = 85% = const.), to demonstrate the
effect of directionally dependent transmis-
sivities. Close to the windows the illumination
is overpredicted by approximately 20% if
r = const. is used, as there light penetrates
through the windows at nearly grazing angles
corresponding to low glass transmissivities.
The effect diminishes to roughly 5% near the
center of the room where direct sky light
penetrates through the windows at near-
normal angles. The difference is mainly due to
the fact that most glazing materials, such as
glass with directional transmissivity, have a
hemispherical transmissivity of less than its
normal value (85%).

Future work will add two important
modeling capabilities to the program. First,
the program will be modified to account for
the contribution of electric lighting fixtures.
This will allow simulation of the total resul-
tant illumination from daylight and electric
lighting and permit investigations of changes
in illumination distributions resulting from
different electric lighting control strategies.
Second, solution of the daylight contribution
in a space from sunlit shading devices repre-
sents a mathematically intractable problem
due to the geometrical complexities of many
of the architectural shading solutions. How-
ever, these window systems can be modeled
by the program if the angular distribution of
the luminous intensity of the window/shading
system is known. The luminous properties of
shading systems will be empirically measured
and then used as an input to a modified
version of this program. With these capabilities
added, the program will be able to model
a broad range of daylighting and electric



lighting conditions in realistic architectural
spaces.

CONCLUSIONS

A general analytical model and numerical
code have been developed that can accurately
and efficiently evaluate daylighting for a vast
variety of room designs. Computer time
requirements for the sample cases discussed
above were generally below ten seconds on an
IBM 3033. The analytical model is capable of
treating complicated design features such as
sheer curtains, window overhangs, non-
rectangular windows, cathedral ceilings, in-
ternal partial obstructions, etc. Thus, it is felt
that the model can be of valuable help for
daylighting considerations in the vast majority
of practical building designs.
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