Fluorescent Cooling of Objects Exposted to Sunlight - The Ruby Example
Title | Fluorescent Cooling of Objects Exposted to Sunlight - The Ruby Example |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Paul H Berdahl, Sharon S Chen, Hugo Destaillats, Thomas W Kirchstetter, Ronnen M Levinson, Michael A Zalich |
Journal | Solar Energy Materials and Solar Cells |
Volume | 157 |
Pagination | 312-317 |
Keywords | Al2O3, Cr, Fluorescent cooling, Quantum efficiency, Ruby |
Abstract | Particularly in hot climates, various pigments are used to formulate desired non-white colors that stay cooler in the sun than alternatives. These cool pigments provide a high near-infrared (NIR) reflectance in the solar infrared range of 700–2500 nm, and also a color specified by a reflectance spectrum in the 400–700 nm visible range. Still cooler materials can be formulated by also utilizing the phenomenon of fluorescence (photoluminescence). Ruby, Al2O3:Cr, is a prime example, with efficient emission in the deep red (~694 nm) and near infrared (700–800 nm). A layer of synthetic ruby crystals on a white surface having an attractive red color can remain cooler in the sun than conventional red materials. Ruby particles can also be used as a red/pink pigment. Increasing the Cr:Al ratio produces a stronger (darker) pigment but doping above ~3 wt% Cr2O3 causes concentration quenching of the fluorescence. The system quantum efficiency for lightly doped ruby-pigmented coatings over white is high, 0.83±0.10. |
DOI | 10.1016/j.solmat.2016.05.058 |
LBNL Report Number | LBNL-1006729 |